Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Illusionen auf dem Weg ins "Unbewusste"

25.03.2004


Gehirnaktivität in hoher raum-zeitlicher Auflösung


Auf einem Monitor leuchtet kurz ein Lichtpunkt auf, gefolgt von einem balkenförmigen Lichtreiz (s. Abb., a - Zeit). Diese einfache Anordnung wird jedoch anders wahrgenommen: Der Balken scheint sich vom Ort des Lichtpunktes auszudehnen und eine Bewegung vorzutäuschen (s. Abb., b). Auf die Gehirnoberfläche geblickt, werden unterschiedliche Aktivitätszustände farblich dargestellt (s. Abb., c). Jedes Bild ist eine Momentaufnahme von 10 Millisekunden Dauer, es zeigt jeweils einen etwa 7x3 mm großen Bereich, der Millionen von Nervenzellen umfasst. Die Farben kennzeichnen den momentanen Aktivitätszustand: Dunkelrote Bereiche beinhalten Nervenzellen mit überschwelliger Aktivität, - die innerhalb des Areals und an höhere Hirnareale weitergleitet wird -, während sich die von blau nach rot ansteigend gefärbten Gehirnbereiche in unterschwelligen Aktivitätszuständen befinden. Der überschwellige, dunkelrote Bereich entwickelt sich in die gleiche Richtung wie unsere Wahrnehmung. Es entsteht ein neuronales Korrelat der Illusion (s. Abb. b).



Noch bevor wir etwas wahrnehmen, laufen unbewusst komplexe Hirnprozesse ab: In Sekundenbruchteilen breiten sich Aktivitätswellen in Nervenzell-Netzwerken aus, wird die Außenwelt im Gehirn abgebildet - doch für uns bleibt zunächst vieles unsichtbar. Junior-Professor Dr. Dirk Jancke (Kognitive Neurobiologie, Lehrstuhl für Allgemeine Zoologie und Neurobiologie der RUB) hat jetzt Unsichtbares sichtbar gemacht. Mit einem neuen optischen Verfahren zur Messung von Gehirnaktivität, entwickelt im Labor von Prof. Dr. Amiram Grinvald (Weizmann Institute of Science, Israel), fand er erstmals ein neurophysiologisches Korrelat einer visuellen Bewegungsillusion in "Echtzeit". Während komplexe Wahrnehmungsleistungen meist höheren Hirnarealen zugeschrieben werden, machte Jancke diese Entdeckungen bereits in frühen, sog. primären Arealen der Großhirnrinde. Über die Ergebnisse berichtet das Wissenschaftsmagazin NATURE in seiner Ausgabe vom 25. März 2004.

... mehr zu:
»Lichtbalken »Lichtpunkt


"Line-Motion Illusion": Unbewegtes bewegt sich

Für seine Untersuchungen wählte Jancke das Phänomen der visuellen Illusionen - gleich einer optischen Sinnestäuschung, wenn die wahrgenommene nicht der physikalisch präsenten Welt entspricht. Illusionen scheinen sich besonders für Fragestellungen in der Hirnforschung zu eignen, bei denen es um Wahrnehmungen, Empfindungen, bis hin zum Bewusstsein geht. Werden zum Beispiel auf einem Monitor kurzzeitig ein Lichtpunkt und wenig später ein Lichtbalken dargestellt, dann nehmen wir den Lichtbalken nicht als solchen wahr: Der Balken scheint sich ausgehend vom Ort des zuvor gesehenen Lichtpunktes sukzessiv bis zur vollen Balkenlänge auszudehnen - man spricht von der "Line-Motion Illusion". Von den in Wirklichkeit unbewegten Objekten wird im Gehirn die Illusion von Bewegung erzeugt. Ähnlich wie beim Betrachten eines Kinofilms führt hier die Abfolge statischer Bilder zur Wahrnehmung kontinuierlicher Bewegung.

"Optical Imaging" - neuronale Aktivität in Echtzeit

Will man die zugrundeliegenden Verarbeitungsmechanismen des Gehirns entschlüsseln, braucht man eine Messmethode, die möglichst große Gehirnbereiche mit präziser örtlicher und zeitlicher Auflösung untersucht. Jancke nutzt dafür eine von Prof. Amiram Grinvald am Weizmann Institut (Israel) entwickelte Methode, bei der ein fluoreszenter Farbstoff in die Membranen von Hirnzellen eingelagert wird. Unter rotem Licht bestimmter Wellenlänge "leuchten" diese Nervenzellen umso stärker auf, je aktiver sie gerade sind, weil fluoreszentes Licht emittiert wird. Die so gewonnenen Signale registriert ein hochempfindliches Kamerasystem. Daraus entsteht dann mit Hilfe von speziellen computergestützten Rechenoperationen ein genaues Bild der momentanen Hirnaktivität. Das Besondere: Jancke erfasst auch unterschwellige Aktivität in den einzelnen Nervenzellen und untersucht damit ihre Kommunikation über ein weitverzweigtes Netzwerk hinweg.

Bewegter Balken im Gehirn

Treffen die Signale von Lichtpunkt und Lichtbalken auf die Netzhaut, dann werden sie dort getrennt registriert und an nachfolgende Gehirnstrukturen weitergeleitet. Schon auf der ersten kortikalen Verarbeitungsebene, den primären visuellen Arealen der Großhirnrinde, stellte Jancke am Weizmann Institut unerwartet weitreichende Verarbeitungsprozesse fest. Der Lichtpunkt löst in diesen frühen Gehirnstrukturen unterschwellige und weitreichende Erregungswellen aus. Was wir davon wahrnehmen, ist allerdings lediglich "die Spitze des Wellenkammes". Nur diese lokale Information über den Ort des Lichtpunktes wird an andere Gehirnareale weitergeleitet, während der Großteil unterschwelliger Aktivitätsbereiche unserer Wahrnehmung zunächst verborgen bleibt. Erst ein nachfolgender Reiz, wie der Lichtbalken bei der "Line-Motion Illusion", hebt die sich ausbreitende unterschwellige Aktivitätswelle auf ein höheres, dann wahrnehmbares Niveau: Der Balken "wächst vor unseren Augen", das Gehirn täuscht uns aus zwei unbewegten Objekten Bewegung vor. Unsere Wahrnehmung "surft entlang" einer nun überschwelligen Aktivitätswelle.

Unbewusst vorbereitet sein

Unser Gehirn ist nicht deshalb so komplex, damit es uns fortwährend täuschen kann, sondern damit wir uns in einer sich stetig bewegenden und verändernden Umwelt besser zurecht finden können. Auf plötzlich erscheinende Objekte, wie ein heranrasendes Auto, werden wir vermutlich durch unterschwellig weit vorauseilende Gehirnaktivitäten intern "vorbereitet", um Verarbeitungszeit zu sparen und schnell reagieren zu können. Darüber hinaus können raum-zeitliche Beziehungen zwischen und innerhalb von Objekten durch weitreichende unterschwellige Gehirnaktivität integriert und nach Bedarf weiterverarbeitet werden um ein ganzheitliches Bild von der Welt zu vermitteln: So nehmen wir ein Blatt - umgeben von vielen anderen Blättern - einem Baum zugehörig wahr, auch wenn es im Wind ständig seine Position verändert oder zeitweise von anderen Blättern verdeckt wird, - für uns eine leichte Aufgabe, mit der technische Systeme große Schwierigkeiten haben können.

Manche Weichen werden unbewusst gestellt...

"Quasi-automatische" Gehirnprozesse verschaffen uns stabile Bildwahrnehmungen und erleichtern uns, visuelle Bewegung wahrzunehmen. Die vorliegende Studie zeigt einen möglichen Basismechanismus. Daneben laufen weitere Verarbeitungsprozesse ab: So kann die "Line-Motion-Illusion" auch durch gezielt gesteuerte Aufmerksamkeit erzeugt werden, wenn wir den Blick willkürlich auf einen bestimmten Ort im Raum richten. Es überrascht jedoch das Ausmaß an Vorverarbeitung in einem primären Hirnareal. Dies lässt darauf schließen, dass an nachfolgende, höhere Hirnregionen bereits entscheidend modifizierte Informationen weitergegeben werden. So werden manche Weichen möglicherweise sehr früh und nicht willentlich gestellt.

Die Förderer

Die Studie wurde durch die Minerva Stiftung, die Marie Curie Stiftung, durch das Grodetsky Center, die Goldsmith Stiftung sowie die Körber Stiftung unterstützt.

Weitere Informationen

Dr. Dirk Jancke
Junior-Professor für kognitive Neurobiologie
Tel: 0234/32-24369, Fax: 0234/ 32-14185
E-Mail: jancke@neurobiologie.ruhr-uni-bochum.de

Dr. Josef König | idw
Weitere Informationen:
http://homepage.ruhr-uni-bochum.de/Dirk.Jancke/line-motion-examples.html
http://homepage.ruhr-uni-bochum.de/Dirk.Jancke/

Weitere Berichte zu: Lichtbalken Lichtpunkt

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Unordnung kann Batterien stabilisieren
18.09.2018 | Karlsruher Institut für Technologie

nachricht Mit Nano-Lenkraketen Keime töten
17.09.2018 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Im Focus: Bio-Kunststoffe nach Maß

Zusammenarbeit zwischen Chemikern aus Konstanz und Pennsylvania (USA) – gefördert im Programm „Internationale Spitzenforschung“ der Baden-Württemberg-Stiftung

Chemie kann manchmal eine Frage der richtigen Größe sein. Ein Beispiel hierfür sind Bio-Kunststoffe und die pflanzlichen Fettsäuren, aus denen sie hergestellt...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: Mit Nano-Lenkraketen Keime töten

Wo Antibiotika versagen, könnten künftig Nano-Lenkraketen helfen, multiresistente Erreger (MRE) zu bekämpfen: Dieser Idee gehen derzeit Wissenschaftler der Universität Duisburg-Essen (UDE) und der Medizinischen Hochschule Hannover nach. Zusammen mit einem führenden US-Experten tüfteln sie an millionstel Millimeter kleinen Lenkraketen, die antimikrobielles Silber zielsicher transportieren, um MRE vor Ort zur Strecke zu bringen.

In deutschen Krankenhäusern führen die MRE jährlich zu tausenden, teils lebensgefährlichen Komplikationen. Denn wer sich zum Beispiel nach einer Implantation...

Im Focus: Schaltung des Stromflusses auf atomarer Skala

Forscher aus Augsburg, Trondheim und Zürich weisen gleichrichtende Eigenschaften von Grenzflächenkontakten im ferroelektrischen Halbleiter nach.

Die Grenzflächen zwischen zwei elektrisch unterschiedlich polarisierten Bereichen im Festkörper werden als ferroelektrische Domänenwände bezeichnet. In der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von den Grundlagen bis zur Anwendung - Internationale Elektrochemie-Tagung in Ulm

18.09.2018 | Veranstaltungen

Unbemannte Flugsysteme für die Klimaforschung

18.09.2018 | Veranstaltungen

Studierende organisieren internationalen Wettbewerb für zukünftige Flugzeuge

17.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Auf der InnoTrans 2018 mit innovativen Lösungen für den Güter- und Personenverkehr

18.09.2018 | Messenachrichten

Von den Grundlagen bis zur Anwendung - Internationale Elektrochemie-Tagung in Ulm

18.09.2018 | Veranstaltungsnachrichten

Extrem klein und schnell: Laser zündet heißes Plasma

18.09.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics