Elektronische DNA Detektierung auf einem Transistornetzwerk

Ein Team von Physikern des „Pierre Aigrain Labors“ (gemeinsames Labor von Ecole Normale Supérieure, CNRS, Universitäten Paris 6 und 7) hat gerade bewiesen, dass es möglich ist, rein elektronisch DNA zu detektieren. Das angewandte Mittel für diese Detektierung ist ein Netzwerk von Silizium Transistoren. Übrigens ist die Detektierung auf der Ladung des biologischen Moleküls basiert, und braucht deshalb keine Markierung mit radioaktiven Isotopen, Fluoreszierenden Trägern, oder anderen Markierungsmitteln. So haben die Forscher einen Detektierungstest von einer der häufigsten Pathogenmutationen des Humangenoms realisiert. Diese Arbeit wurde im renommierten Fachjournal „Applied Physic Letters“ veröffentlicht, und begründet auch einen 2003 PCT Patent.

Das Prinzip der Detektierung von geladenen Molekülen mit einem Feldeffekttransistor ist seit 3 Jahrzehnten bekannt. Bisher war die Detektierung von einem Biomolekül nur mit einem einzigen Feldeffekttransistor studiert. Den Forschern ist die Idee eingefallen, ein Transistornetzwerk (ungefähr 100 Transistore je mit einigen Quadratmikrometer Aktivoberfläche) zu benutzen, um eine Differentialmessung einzubringen, und die Detektierungsleistungen deutlich zu erhöhen.

Die Transistornetzwerke wurden in Zusammenarbeit mit dem Martinsried Max Planck Institut für Biochemie dank herkömmlichen Siliziumelektronikmethoden vorbereitet. Dann werden Biomolekülproben auf die Netzwerke gestellt, und die elektronische Charakteristik von jedem Transistor wird gemessen: wenn ein Transistor in Kontakt mit einem Biomolekül ist, verschiebt sich die Charakteristik abhängig von der Ladung des Biomoleküls (positive Verschiebung im Falle eines positiv geladenen Moleküls, negative Verschiebung im Falle eines negativ geladenen Moleküls). In bestimmten Verhältnissen induziert das in einer Wasserumgebung negativ geladene DNA eine negative Verschiebung, die gemessen werden kann.

Diese neue elektronische Messungstechnik wurde für die Detektierung einer Mutation des 13. Chromosoms angewandt: diese Mutation ist mit der erblichen Taubheit von Kindern verbunden, und ist eine der häufigsten pathologieinduzierten Mutationen des Humangenoms. Eine Enzymverstärkungsreaktion findet nur in Anwesenheit dieser Mutation statt, und das Produkt dieser Reaktion konnte mit dem Transistornetzwerk detektiert werden. Diese elektronische Detektierungsmethode mit Feldeffekttransistornetzwerken hat viele Vorteile für potentielle Anwendungen: Markierung der Biomoleküle ist unnötig, hohe Miniaturisierung, Analyse von einer hohen Zahl von Proben in Parallel, und Herstellung von Geräte vom „Labor auf einem Chip“ Typ.

Kontakt:
Ulrich Bockelmann Laboratoire Pierre Aigrain,
Département de Physique, Ecole Normale
rue Lhomond, F-75231 Paris Cedex 05, Frankreich
Email: ulrich.bockelmann@lpa.ens.fr

Dies ist ein Artikel aus dem Bulletin Wissenschaft-Frankreich (Nummer 49 vom 15.03.2004) Französische Botschaften in Deutschland, Österreich und der Schweiz Kostenloses Abonnement durch E-Mail : sciencetech@botschaft-frankreich.de

Media Contact

Ulrich Bockelmann Französ. Botschaft Deutschland

Weitere Informationen:

http://www.lpa.ens.fr

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nanofasern befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Wenn Immunzellen den Körper bewegungsunfähig machen

Weltweit erste Therapie der systemischen Sklerose mit einer onkologischen Immuntherapie am LMU Klinikum München. Es ist ein durchaus spektakulärer Fall: Nach einem mehrwöchigen Behandlungszyklus mit einem immuntherapeutischen Krebsmedikament hat ein…

Partner & Förderer