Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bakterien korrodieren Eisen

02.03.2004


Korrosionsschema


Mikroskopische Aufnahme neuartiger sulfatreduzierender Bakterien


Eisen ist das technologisch wichtigste Metall, hat aber einen Nachteil: Ungeschütztes Eisen rostet. Hauptschuld daran trägt der Sauerstoff der Luft, der Eisen in nasser Umgebung angreift. In vollständig wassergefüllten Rohrleitungen und Behältern, wo nur Wasser aber keine Luft vorhanden ist, wäre Eisen im Prinzip recht lange beständig. Doch statt von Sauerstoff wird das Eisen unter diesen Verhältnissen oft von Bakterien angegriffen, die speziell an ein Leben ohne Sauerstoff angepaßt sind. Man spricht von anaerober Biokorrosion. Diese ist seit Jahrzehnten bekannt und höchst unerwünscht, z.B. in der Erdöltechnologie. Weniger bekannt war, welche Bakterienarten die Hauptübeltäter sind und welcher Mechanismus dabei abläuft. Jetzt wurden neuartige Bakterien entdeckt, die Eisen deutlich schneller als bisher bekannte Arten korrodieren, aber dennoch bislang offensichtlich übersehen worden sind. Experimente sprechen dafür, daß diese Bakterien auf eine noch ungeklärte Weise, aber auf jeden Fall im engen Kontakt mit dem Eisen diesem Elektronen entziehen, und Elektronenentzug aus einem Metall heißt, daß dieses korrodiert.


Mit der ersten Herstellung von Eisen vor vermutlich fünftausend Jahren wurde der Menschheit das auch heute noch wichtigste Gebrauchsmetall beschert. Eisen, besonders in Form von Stählen, ist fest, elastisch, gut zu verarbeiten, härtbar und zudem preiswert. Eisen hat nur einen gravierenden Nachteil: Ohne Schutzanstrich oder ohne Legierung mit anderen, teureren Metallen rostet es, d.h. der Sauerstoff der Luft oxidiert das feste metallische Eisen in nasser Umgebung fortschreitend zu bröseligen, wasserhaltigen Oxiden, wobei - chemisch gesehen - das nullwertige Metall dreiwertig positiv wird. Doch auch unter Ausschluß von Sauerstoff ist Eisen nicht beliebig beständig, sondern wird von Wasser allein angegriffen; dabei entstehen flockige Formen des zweiwertig positiven Eisens und Wasserstoffgas. Zum Glück ist diese Korrosion unter Luftausschluß - im Vergleich zum Rosten an der Luft - sehr langsam. Deshalb hat man auch lange Zeit z.B. für Heizungsrohre normales Eisen verwendet. Solange sie innen mit Wasser gefüllt und luftfrei blieben, trat meist über Jahrzehnte kein nennenswerter Korrosionsschaden auf.

Bei der Auflösung des Eisens, ob mit oder ohne Sauerstoff, handelt es sich um sogenannte elektrochemische Prozesse, d.h. die chemischen Reaktionen sind mit dem Fließen elektrischer Ströme verbunden, etwa wie in einer kurzgeschlossenen Batterie. Da mag es zunächst überraschen, daß auch Mikroorganismen, also kleinste einzellige Lebewesen, bei der Eisenkorrosion ein Rolle spielen können. Tatsächlich weiß man aber schon seit mehr als siebzig Jahren, daß die sonst erstaunlich lange Haltbarkeit von Eisen in luftfreiem Wasser durch bestimmte Bakterien dramatisch verkürzt werden kann. Überhaupt verfügen diverse Mikroorganismen-Arten über Mechanismen, etliche harte Materialien wie Kalksandstein oder die Substanz unserer Zähne aufzulösen. Während die Auflösung letzterer Materialien relativ einfach allein durch Einwirkung ohne Beteiligung von elektrischen Strömen erklärt werden kann, ist die Auflösung von Eisen durch Mikroorganismen ein komplexer elektrochemischer Prozeß. Dieser macht sich nicht so sehr als flächige Korrosion sondern eher als Lochfraß bemerkbar, z.B. in Pipelines, und kann kostspielige Schäden verursachen. Hauptverursacher sind sogenannte sulfatreduzierende Bakterien. Sie sind überall in Gewässern verbreitet und können aber weder Mensch noch Tier noch Pflanze infizieren. Bei diesen Bakterien gibt es genau genommen gleich zwei Korrosionsmechanismen:


Der eine Korrosionsmechanismus ist offensichtlich: Diese Bakterien leben davon, daß sie, wie der Name sagt, das harmlose, in natürlichen Wässern häufige Sulfat (in ungelöster Form z.B. als Gips bekannt) zu Schwefelwasserstoff reduzieren, einer faulig riechenden, aggressiven und giftigen Substanz. Bei Arbeiten in schlecht belüfteten Abwassersystemen wird dieser Schwefelwasserstoff zu Recht gefürchtet. Als Reduktionsmittel für die Umwandlung von Sulfat in Schwefelwasserstoff dienen diesen Bakterien Produkte aus natürlichen Verwesungsprozessen, z.B. im häuslichen Abwässer, die dabei zu Kohlendioxid oxidiert werden. Der Schwefelwasserstoff greift dann das Eisen an, wobei sich pechschwarze Reaktionsprodukte bilden.

Der andere Korrosionsmechanismus ist weniger klar, obwohl schon um 1930 Modellvorstellungen dazu entwickelt wurden. Sulfatreduzierende Bakterien verwenden nämlich auch Wasserstoffgas, um Sulfat zu reduzieren. Weil sich auf Eisen in Wasser langsam Wasserstoffgas, oft als "kathodischer Wasserstoff" bezeichnet, als Produkt bildet, wurde lange angenommen, daß dessen Verbrauch durch die sulfatreduzierenden Bakterien die Auflösung des Metalls im Wasser beschleunigt. Ein solches Prinzip ist aus der Chemie wohlbekannt: Wird das Produkt aus einer antriebsschwachen chemischen Reaktion in einer zweiten, sich anschließenden Reaktion gleich weiter verbraucht, kommt die erste Reaktion auf Touren. Im Falle der Biokorrosion von Eisen ist jedoch diese verlockende Vorstellung offensichtlich nicht haltbar. Am Max-Planck-Institut für marine Mikrobiologie, Bremen, wurden in Zusammenarbeit mit dem Materialprüfungsamt in Bremen und dem Max-Planck-Institut für Eisenforschung, Düsseldorf, Bakterien entdeckt, welche Eisen deutlich schneller korrodieren, als es durch Verbrauch von Wasserstoffgas jemals möglich wäre. Alles spricht dafür, daß sie im engen Kontakt mit dem Eisen diesem direkt Elektronen entziehen und so gewissermaßen den Umweg über "kathodischen Wasserstoff" umgehen. Und Elektronenentzug aus Eisen bedeutet Korrosion. Wie ein Elektronenfluß über die winzig kurze, aber dennoch über eine "Stomleitung" zu überbrückende Strecke zwischen Eisen und Bakterienzellen zustande kommt, ist noch unbekannt. Versteht man erst einmal deren Biochemie, wird man auch gezielter forschen können, um Schutzmaßnahmen zu entwickeln.

Man darf annehmen, daß die neu entdeckten Bakterien eine wichtige, aber bisher übersehene Rolle bei der biologischen Eisenzerstörung spielen. Das Ausgangsexperiment für das Aufspüren dieser Bakterien war recht einfach: Zunächst wurden kleine Eisenstücke in Meeresschlamm in sauerstofffreien Flaschen gesteckt. Nach mehreren Wochen wurden die Bakterien, die auf dem allmählich dahinschwindenden Metall wuchsen, analysiert. Die eigentlich korrosiven Arten erwiesen sich dabei allerdings als schwieriger zu isolieren als begleitende Arten. Isolierung und experimentelle Untersuchung in Reinkulturen sind, wie schon zu Robert Kochs Zeiten, für eine kausale Analyse der Wirkung von Bakterien unabdingbar. Solche züchterischen Verfahren gehen heute Hand in Hand mit verfeinerten molekularbiologischen und mikroskopischen Analysen. Ohne diese Methodenkombination könnten die sehr diversen Bakterien als sehr kleine Organismen mit nur wenigen Tausendstel Millimetern Durchmesser und einfachen Zellformen kaum voneinander unterschieden und untersucht werden.

Dr. Manfred Schloesser | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpi-bremen.de

Weitere Berichte zu: Bakterium Eisen Metall Sauerstoff Schwefelwasserstoff Wasserstoffgas

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht IMMUNOQUANT: Bessere Krebstherapien als Ziel
19.10.2018 | Julius-Maximilians-Universität Würzburg

nachricht Auf dem Weg zu maßgeschneiderten Naturstoffen
19.10.2018 | Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Auf dem Weg zu maßgeschneiderten Naturstoffen

Biotechnologen entschlüsseln Struktur und Funktion von Docking Domänen bei der Biosynthese von Peptid-Wirkstoffen

Mikroorganismen bauen Naturstoffe oft wie am Fließband zusammen. Dabei spielen bestimmte Enzyme, die nicht-ribosomalen Peptid Synthetasen (NRPS), eine...

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Natürlich intelligent

19.10.2018 | Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ultraleichte und belastbare HighEnd-Kunststoffe ermöglichen den energieeffizienten Verkehr

19.10.2018 | Materialwissenschaften

IMMUNOQUANT: Bessere Krebstherapien als Ziel

19.10.2018 | Biowissenschaften Chemie

Raum für Bildung: Physik völlig schwerelos

19.10.2018 | Bildung Wissenschaft

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics