Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rote Fluoreszenz in zwei Schritten

13.09.2017

Wissenschaftler entschlüsselten den Mechanismus, wie man Proteine, die auf Licht reagieren, in zwei Stufen dazu bringen kann, rot zu leuchten. Die Forschenden schufen damit die Grundlage für neue Anwendungen in der Mikroskopie und für funktionelle Analysen in der biologischen Forschung.

Am Anfang stand eine Beobachtung, die ETH-Wissenschaftler vor zwei Jahren mit einem speziellen fluoreszierenden Protein machten, dem aus Korallen isolierten Dendra 2. Es fluoresziert grün. Mit Licht kann man die molekulare Struktur des Proteins so verändern, dass es seine Farbe zu Rot wechselt.


Bescheint man Dendra 2 (rechts dessen farbgebende chemische Verbindung) mit blauem Laserlicht, fluoresziert es grün. Bescheint man es violett, ändert es seine chemische Struktur, so dass es zu einem rot fluoreszierenden Protein wird. Zu dieser Strukturänderung kommt es auch, wenn man es kurz mit blauem und gleich anschliessend mit rotem Licht (oder mit blauem und rotem Laserlicht gleichzeitig) bescheint. (Grafik: ETH Zürich)

Die Forschenden fanden damals einen zweiten, neuen Weg für diesen Farbwechsel: Man regt es zuerst kurz mit einem blauen Laserpuls an und bescheint es sofort danach mit Nah-Infrarot-Licht. Dieses zweistufige Farbumschalten kann unter anderem in der Fluoreszenzmikroskopie angewandt werden, um in einem Gewebe einen dreidimensional präzise definierten Punkt, beispielsweise eine einzige Zelle, sichtbar zu machen (siehe https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2015/05/chamaeleon...).

Ein internationales Forscherteam unter der Leitung von Periklis Pantazis, Professor am Departement für Biosysteme der ETH Zürich in Basel, hat diesen zweistufigen Farbwechselmechanismus nun aufgeklärt. Die Wissenschaftler nennen ihn «primed conversion». Das neue Wissen ermöglicht den Forschenden, andere Proteine, die auf Licht reagieren, so zu verändern, dass auch sie in zwei Stufen angeregt werden können.

Innerhalb von Millisekunden

Die Forschenden der ETH Zürich, des Karlsruher Instituts für Technologie und des Janelia Research Campus in Ashburn, Virginia, untersuchten die mit blauem Licht aktivierten Proteine besonders genau. Sie konnten dabei zeigen, dass sich diese Proteine in einem angeregten Zustand befinden, der mehrere Millisekunden anhält. «Das ist verhältnismässig lang», erklärt Pantazis, «andere Fluoreszenzphänomene habe eine um ein Vielfaches kürzere Dauer.»

Ebenfalls konnten die Wissenschaftler zeigen, dass es sich bei diesem Zustand um ein in der Quantenchemie bekanntes Phänomen, einen sogenannten Triplett-Zustand handelt. Nach rund fünf Millisekunden fällt das Farbprotein Dendra 2 wieder in seinen Grundzustand zurück. Zur «primed conversion» kommt es nur, wenn die zweite Stufe, das Bescheinen mit Nah-Infrarot-Licht, innerhalb des Triplett-Zeitfensters erfolgt.

Aminosäure-Sequenzen verändert

Die Lebensdauer des Triplett-Zustands hängt stark von der Stabilität des Farbproteins ab, und diese wiederum ist von der genauen Abfolge der Protein-Bausteine (der Aminosäuren) abhängig. Die Wissenschaftler veränderten daher bei Dendra 2 die Aminosäure-Sequenz an mehreren Stellen. Dasselbe machten sie bei einem weiteren fluoreszierenden Protein, Eos, das bisher nicht zweistufig angeregt werden konnte. Aus der wissenschaftlichen Literatur war bekannt, dass diese Stellen für den Triplett-Zustand zentral sind.

Bei all den neuen Proteinen massen die Wissenschaftler die Dauer des Triplettzustands. Bei einigen der getesteten Proteinen verlängerte sich dieser Zustand markant. Auch konnten die Wissenschaftler das Eos-Protein so verändern, dass es ebenfalls zweistufig aktivierbar wurde. Dasselbe gelang ihnen bei weiteren sechs, bisher nicht zweistufig aktivierbaren Proteinen. «Die veränderten Proteine sind nicht nur erstmals zweistufig schaltbar, auch sind sie stabiler, und als Folge davon leuchten sie stärker», sagt Manuel Mohr, Doktorand in der Gruppe von Pantazis und Erstautor der Studie.

Mit jedem Mikroskop möglich

Die ursprüngliche Entdeckung machten die Wissenschaftler mit einem nicht-handelsüblichen Laser. Sie verwendeten dazu Licht im Nah-Infrarot-Bereich. Mittlerweile konnten die Wissenschaftler aber zeigen, dass der Effekt auch mit handelsüblichen Rot-Lasern, wie sie in jedem Fluoreszenzmikroskop verbaut sind, zustandekommt. Das heisst, «primed conversion» ist mit jedem Fluoreszenzmikroskop machbar.

«Primed conversion» kann in der Mikroskopie verwendet werden, um in einem Gewebe einen eng umrissenenen Punkt zu markieren. Dazu lenken die Wissenschaftler einen blauen und einen roten Laserstrahl so in das Gewebe, dass sich die Strahlen an einem Punkt kreuzen. Nur in diesem Kreuzungspunkt kommt es zur «primed conversion». «Weil weder blaues noch rotes Laserlicht toxisch wirken, eignet sich die Methode hervorragend für lebende Organismen», sagt Pantazis. Auch Anwendungen in weiteren Mikroskopietechniken seien denkbar, darunter in der extrem hochauflösenden Mikroskopie (super-resolution microscopy), die seit einigen Jahren existiert.

Hirnkartierung und Gensequenzierung

«Wir wissen jetzt, wie wir fotokonvertierbare Proteine so verändern, dass wir sie zweistufig schalten können», sagt Pantazis. Dieses Wissen haben die Forschenden patentieren lassen. Die ETH-Wissenschaftler arbeiten mit Proteinexperten zusammen, um weitere, in der Mikroskopie verwendete Farbproteine entsprechend zu verändern.

Kürzlich haben die Wissenschaftler Proteine so verändert, dass sie lichtgesteuert einen genaktivierenden Botenstoff abspalten lassen können, und zwar so, dass die Lichtaktivierung mit zwei Farben erfolgen kann. Forschende könnten ein Gewebe so mit Laser bestrahlen, dass sich ein blauer und ein roter Strahl an einem Punkt kreuzen. Damit liessen sich gezielt Gene in einer einzelnen Zelle des Gewebes aktivieren. Ausserdem lassen sich auch Proteine, die Kalzium detektieren, entsprechend verändern. Diese könnten in der 3D-Hirnkartierung eingesetzt werden.

Schliesslich können Biologen die neue Technik für weitere funktionelle Analysen in 3D anwenden: Die ETH Zürich hat für das Patent bereits mehrere Lizenzen vergeben, darunter eine an eine Start-up-Firma, welche die DNA-Sequenzierung in einem 3D-System entwickeln möchte.

Literaturhinweis

Mohr MA, Kobitski AY, Sabater LR, Nienhaus K, Obara CJ, Lippincott-Schwartz J, Nienhaus GU, Pantazis P: Rational Engineering of Photoconvertible Fluorescent Proteins for Dual-Color Fluorescence Nanoscopy Enabled by a Triplet-State Mechanism of Primed Conversion. Angewandte Chemie, 11. Juli 2017, doi: 10.1002/ange.201706121 [htttp://dx.doi.org/10.1002/ange.201706121]

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2017/09/rote-fluor...

Hochschulkommunikation | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Gold-Recycling
13.12.2018 | Gesellschaft Deutscher Chemiker e.V.

nachricht Biobanken machen sich fit für die Forschung der Zukunft
13.12.2018 | TMF - Technologie- und Methodenplattform für die vernetzte medizinische Forschung e.V. (TMF)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkryptographie ist bereit für das Netz

Wiener Quantenforscher der ÖAW realisierten in Zusammenarbeit mit dem AIT erstmals ein quantenphysikalisch verschlüsseltes Netzwerk zwischen vier aktiven Teilnehmern. Diesen wissenschaftlichen Durchbruch würdigt das Fachjournal „Nature“ nun mit einer Cover-Story.

Alice und Bob bekommen Gesellschaft: Bisher fand quantenkryptographisch verschlüsselte Kommunikation primär zwischen zwei aktiven Teilnehmern, zumeist Alice...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Tödliche Kombination: Medikamenten-Cocktail dreht Krebszellen den Saft ab

Zusammen mit einem Blutdrucksenker hemmt ein häufig verwendetes Diabetes-Medikament gezielt das Krebswachstum – dies haben Forschende am Biozentrum der Universität Basel vor zwei Jahren entdeckt. In einer Folgestudie, die kürzlich in «Cell Reports» veröffentlicht wurde, berichten die Wissenschaftler nun, dass dieser Medikamenten-Cocktail die Energieversorgung von Krebszellen kappt und sie dadurch abtötet.

Das oft verschriebene Diabetes-Medikament Metformin senkt nicht nur den Blutzuckerspiegel, sondern hat auch eine krebshemmende Wirkung. Jedoch ist die gängige...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Konferenz zu Usability und künstlicher Intelligenz an der Universität Mannheim

13.12.2018 | Veranstaltungen

Show Time für digitale Medizin-Innovationen

13.12.2018 | Veranstaltungen

ICTM Conference 2019 in Aachen: Digitalisierung als Zukunftstrend für den Turbomaschinenbau

12.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Forschungsprojekt FastCharge: Ultra-Schnellladetechnologie bereit für die Elektrofahrzeuge der Zukunft

13.12.2018 | Energie und Elektrotechnik

GFOS-Innovationsaward 2019: Anmeldung ab sofort möglich

13.12.2018 | Förderungen Preise

Quantenkryptographie ist bereit für das Netz

13.12.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics