Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

DFG-Nachwuchsgruppe untersucht Struktur von Membranproteinen

21.05.2001


Gefördert durch das Emmy-Noether-Programm der Deutschen Forschungsgemeinschaft (DFG) startet die Nachwuchsgruppe um Dr. Clemens Glaubitz im Mai 2001 ihre Forschungsarbeiten zur "Entwicklung und Anwendung von Festkörper-NMR-Methoden zum Studium membranständiger Proteine". Die biophysikalische Arbeitsgruppe ist am Forschungsinstitut für Molekulare Pharmakologie (FMP) angesiedelt und durch einem Kooperationsvertrag mit dem Institut für Chemie der Freien Universität Berlin (FU) verbunden.


Etwa 15-30% aller von den Genen festgelegten Informationen werden in Form von Membranproteinen codiert. Sie sind verantwortlich für die verschiedensten Zellfunktionen, wie beispielsweise die intra- und interzelluläre Kommunikation. Die Kenntnis der Struktur-Funktions-Beziehung dieser Proteine ist von zentraler Bedeutung für die Medizin und die Pharmakologie, da Membranproteine 50-60% aller möglichen Angriffspunkte (drug targets) für innovative Therapeutika darstellen. Dazu ist es notwendig, die räumliche Struktur dieser großen Biomoleküle - bis hinein in molekulare Details - aufklären zu können.

Strukturuntersuchungen an derartigen Molekülen sind äußerst aufwendig, da Membranproteine im Gegensatz zu löslichen Proteinen nur schlecht kristallisieren. Die systematische Entwicklung geeigneter Methoden der Festkörper-Kernresonanzspektroskopie (NMR) zur Strukturaufklärung und zu Funktionsstudien der Biomoleküle ist das Ziel der DFG-Nachwuchsgruppe um Dr. Clemens Glaubitz. Im Mittelpunkt der Untersuchungen stehen dabei so genannte Multidrug-Transporter, die für den aktiven Transport von Wirkstoffen aus der Zelle verantwortlich sind, sowie G-Protein-gekoppelte Rezeptoren. Letztere stellen wichtige Zielstrukturen für Pharmaka dar. Die biophysikalischen Arbeiten werden am FMP auf dem Biomedizinischen Campus Berlin-Buch durchgeführt.


Mit dem Emmy-Noether-Programm fördert die DFG besonders qualifizierte Nachwuchswissenschaftler, um ihnen den Weg zu früher wissenschaftlicher Selbstständigkeit zu eröffnen. Die Förderung wird über einen Zeitraum von fünf Jahren gewährt. Unmittelbar nach der Promotion erhalten die Wissenschaftler die Möglichkeit, durch einen zweijährigen Auslandsaufenthalt und eine anschließende eigenverantwortliche Forschungstätigkeit im Inland - verbunden mit der Leitung einer eigenen Nachwuchsgruppe sowie Lehraufgaben - die Voraussetzungen für eine Berufung als Hochschullehrer zu erlangen.

Nach dem Physikstudium an der Universität Leipzig hat Dr. Clemens Glaubitz in Oxford promoviert, wo er anschließend zwei Jahre seine Strukturforschungen vertiefte. Nach einem weiteren Forschungsaufenthalt in Stockholm wird er nun für drei Jahre seine experimentellen Arbeiten am FMP fortsetzen. Während dieser Zeit wird Dr. Glaubitz Lehraufgaben am Institut für Chemie (Fachbereich Biologie, Chemie, Pharmazie) der FU Berlin übernehmen.

Nähere Informationen erteilt Ihnen gerne:
Dr. Clemens Glaubitz, Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Tel.: 030 / 94793-282, Fax: 030 / 94793-235, E-Mail: glaubitz@fmp-berlin.de



Ilka Seer |

Weitere Berichte zu: Membranprotein Pharmakologie Protein

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 3D-Landkarten der Genaktivität
20.11.2019 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Einblick in die dunkle Materie des Genoms
20.11.2019 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Teilchen, große Wirkung: Wie Nanoteilchen aus Graphen die Auflösung von Mikroskopen verbessern

Konventionelle Lichtmikroskope können Strukturen nicht mehr abbilden, wenn diese einen Abstand haben, der kleiner als etwa die Lichtwellenlänge ist. Mit „Super-resolution Microscopy“, entwickelt seit den 80er Jahren, kann man diese Einschränkung jedoch umgehen, indem fluoreszierende Materialien eingesetzt werden. Wissenschaftlerinnen und Wissenschaftler am Max-Planck-Institut für Polymerforschung haben nun entdeckt, dass aus Graphen bestehende Nano-Moleküle genutzt werden können, um diese Mikroskopie-Technik zu verbessern. Diese Nano-Moleküle bieten eine Reihe essentieller Vorteile gegenüber den bisher verwendeten Materialien, die die Mikroskopie-Technik noch vielfältiger einsetzbar machen.

Mikroskopie ist eine wichtige Untersuchungsmethode in der Physik, Biologie, Medizin und vielen anderen Wissenschaften. Sie hat jedoch einen Nachteil: Ihre...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Mit künstlicher Intelligenz zum besseren Holzprodukt

Der Empa-Wissenschaftler Mark Schubert und sein Team nutzen die vielfältigen Möglichkeiten des maschinellen Lernens für holztechnische Anwendungen. Zusammen mit Swiss Wood Solutions entwickelt Schubert eine digitale Holzauswahl- und Verarbeitungsstrategie unter Verwendung künstlicher Intelligenz.

Holz ist ein Naturprodukt und ein Leichtbauwerkstoff mit exzellenten physikalischen Eigenschaften und daher ein ausgezeichnetes Konstruktionsmaterial – etwa...

Im Focus: Eine Fernsteuerung für alles Kleine

Atome, Moleküle oder sogar lebende Zellen lassen sich mit Lichtstrahlen manipulieren. An der TU Wien entwickelte man eine Methode, die solche „optischen Pinzetten“ revolutionieren soll.

Sie erinnern ein bisschen an den „Traktorstrahl“ aus Star Trek: Spezielle Lichtstrahlen werden heute dafür verwendet, Moleküle oder kleine biologische Partikel...

Im Focus: Atome hüpfen nicht gerne Seil

Nanooptische Fallen sind ein vielversprechender Baustein für Quantentechnologien. Forscher aus Österreich und Deutschland haben nun ein wichtiges Hindernis für deren praktischen Einsatz aus dem Weg geräumt. Sie konnten zeigen, dass eine besondere Form von mechanischen Vibrationen gefangene Teilchen in kürzester Zeit aufheizt und aus der Falle stößt.

Mit der Kontrolle einzelner Atome können Quanteneigenschaften erforscht und für technologische Anwendungen nutzbar gemacht werden. Seit rund zehn Jahren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage 2020: „Mach es einfach!“

18.11.2019 | Veranstaltungen

Humanoide Roboter in Aktion erleben

18.11.2019 | Veranstaltungen

1. Internationale Konferenz zu Agrophotovoltaik im August 2020

15.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kleine Teilchen, große Wirkung: Wie Nanoteilchen aus Graphen die Auflösung von Mikroskopen verbessern

20.11.2019 | Materialwissenschaften

Eisberge als Nährstoffquelle - Führt der Klimawandel zu mehr Eisendüngung im Ozean?

20.11.2019 | Geowissenschaften

Gehen verändert das Sehen

20.11.2019 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics