Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulare Klettverschlüsse machen Holz formbar

25.11.2003


Potsdamer Max-Planck-Forscher haben einen bisher unbekannten molekularen Mechanismus entdeckt, durch den sich Holz zerstörungsfrei verformen lässt


Einzelne Holzfaser in polarisiertem Licht und schematische Darstellung des"Klettverschlusses" in der Zellwand von Holzzellen.

Bild: Max-Planck-Institut für Kolloid- und Grenzflächenforschung



Mit den außergewöhnlichen Eigenschaften von biologischen Materialien wie Knochen oder Holz beschäftigen sich Wissenschaftler am Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam. Gemeinsam mit Kollegen aus Wien und Leoben (Österreich) sowie aus Kiel und Grenoble (Frankreich) haben die Forscher dünne Holzfolien und -fasern im Röntgenstrahl der Europäischen Synchrotronstrahlungsquelle ESRF gedehnt und alle hierbei ablaufenden molekularen Veränderungen beobachtet. Dabei haben sie in der Zellwand einen molekularen Mechanismus entdeckt, mit dem sich Holz - ähnlich wie Metall - verformen kann, ohne dass Beschädigungen auftreten. Diese Verformung beruht auf spiralförmig gewundenen Zellulosefibrillen, die in der Wand der Holzzellen liegen und durch eine Matrix aus Polymeren miteinander verbunden sind. Werden diese Fibrillen nun durch starke Kräfte verdreht, löst sich ihre Verbindung untereinander und rastet - sobald diese äußeren Kräfte nachlassen - in einer neuen Position wieder ein, wie bei einem Klettverschluss. Dieser Klettverschluss ermöglicht Holz eine ähnlich "plastische Reaktion" wie bei Metallen. Die Ergebnisse werden in der Dezember-Ausgabe der internationalen Fachzeitschrift "Nature Materials" veröffentlicht.



Bäume haben ihre innere Struktur und äußere Gestalt über Jahrmillionen an die Umweltbedingungen angepasst. Ihr Holz muss zwei Anforderungen gleichzeitig erfüllen: mechanische Stabilität und effizienter Wassertransport. Nur wenn beides in einem optimalen Kompromiss gewährleistet ist, können Bäume bis zu 120 Meter hoch in den Himmel wachsen. Mikroskopisch betrachtet ist Holz ein komplex aufgebautes Material, ein Nanokomposit, der komplett aus Polymeren besteht und dennoch bemerkenswert fest ist. Ein Grund dafür ist seine Adaptionsfähigkeit: Holz kann sich nicht nur die äußere Form eines Stamms oder Asts, sondern auch seine molekulare Struktur an die natürlichen Anforderungen anpassen. Es besteht im Wesentlichen aus parallelen Röhren, den Holzzellen, deren Zellwände aus Zellulosefibrillen sowie einer Matrix aus Hemizellulose und Lignin aufgebaut sind. Die nur wenige Nanometer dicken Zellulosefibrillen sind wiederum spiralförmig um den zylindrischen Hohlraum der Holzzelle gewickelt. Bisher war wenig darüber bekannt, ob die Steifigkeit und Dehnbarkeit des Holzes eher durch diese Fibrillen in der Zellwand oder durch Interaktionen zwischen den Holzzellen selbst beeinflusst wird.

Um hinter die molekularen Details dieser Verformungsmechanismen innerhalb der Zellwand zu kommen, haben die Wissenschaftler unterschiedliche Holzproben an der Europäischen Synchrotronstrahlungsquelle in Grenoble mit Röntgenstrahlung untersucht. Dazu hatten der Physiker Jozef Keckes und der Holzbiologe Ingo Burgert gemeinsam mit ihrem Team dünne Holzfolien und auch einzelne -zellen präpariert. Die Holzzellen mit einem Durchmesser von 25 Mikrometern, also deutlich dünner als ein menschliches Haar, wurden dann kontrolliert gedehnt und simultan mit der Streuung von Synchrotronstrahlung analysiert. Mit dieser Methode konnten die Wissenschaftler erstmals messen, wie sich der Spiralwinkel der Zellulosefibrillen während der Verformung verändert. Die Forscher stellten fest, dass Holzzellen ähnlich wie Spiralfedern reagieren, denn auch im Holz wurde der Winkel der Spiralen mit zunehmender Dehnung immer steiler. Damit war klar, dass der Verformungsmechanismus nicht durch Zell-Zell-Interaktionen, sondern innerhalb der Zellwand vermittelt wird.

Die Wissenschaftler konnten genau klären, wieso Holz stark verformt werden kann, ohne dass es beschädigt wird. Diese Eigenschaft kennt man eigentlich nur von Metallen: Diese kann man walzen oder schmieden und sie sind danach genauso steif wie zuvor. Doch die Metalle haben dafür einen speziellen Mechanismus, bei dem so genannte Versetzungen durch das Kristallgitter gleiten, ohne das Metallgitter zu schädigen. Etwas Vergleichbares aber war bisher für Polymer-Verbund-Materialien nicht bekannt. Die neuen Untersuchungen zeigen jetzt, dass sich die Polymermatrix, welche die Nanofasern aus Zellulose verbindet, ähnlich wie ein Klettverschluss öffnen und dann in einer neuen Position wieder einrasten kann. Welche molekularen Bindungen bei diesem Öffnen und Schließen tatsächlich beteiligt sind, ist noch nicht klar. Doch die Wissenschaftler gehen davon aus, dass sich bei der Verformung eine größere Zahl unspezifischer chemischer Bindungen vorübergehend löst. Sobald der äußere Stress aufhört, gleiten die Nanofibrillen nicht zurück, sondern rasten gewissermaßen an einer anderen Stelle wieder ein, indem sich dort die zuvor geöffneten chemischen Bindungen wieder schließen. Das ist der tiefere Grund, warum sich Holz zerstörungsfrei verformen lässt.

"Das Gleiten von Versetzungen, auf dem die plastische Verformung von Metallen beruht, ist in Holz offenbar durch einen molekularen Klett-Mechanismus ersetzt, sagt Prof. Peter Fratzl, Direktor am Max-Planck-Institut für Kolloid- und Grenzflächenforschung und Leiter des gemeinsamen Forschungsprojektes. "Doch unsere neuen Forschungsergebnisse geben nicht nur Aufschluss, wie die Natur die von ihr verwendeten Materialien optimiert hat, sondern sie sind auch wichtige Anhaltspunkte für die Entwicklung neuartiger biomimetischer Materialien."

Weitere Informationen erhalten Sie von:

Prof. Peter Fratzl
Max-Planck-Institut für Kolloid- und Grenzflächenforschung
Wissenschaftspark Golm, Potsdam
Tel.: 0331 567-9401, Fax: -9402
E-Mail: fratzl@mpikg-golm.mpg.de

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpikg-golm.mpg.de

Weitere Berichte zu: Holzzellen Metall Verformung Zellulosefibrillen Zellwand

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie breitet sich der Kalikokrebs aus?
25.06.2018 | Pädagogische Hochschule Karlsruhe

nachricht Brücken bauen mit Wassermolekülen
25.06.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wendelstein 7-X erreicht Weltrekord

Stellarator-Rekord für Fusionsprodukt / Erste Bestätigung für Optimierung

Höhere Temperaturen und Dichten des Plasmas, längere Pulse und den weltweiten Stellarator-Rekord für das Fusionsprodukt hat Wendelstein 7-X in der...

Im Focus: Schnell und innovativ: Jülicher Superrechner ist eine Neuentwicklung aus Europa

Bei der Entwicklung innovativer Superrechner-Architekturen ist Europa dabei, die Führung zu übernehmen. Leuchtendes Beispiel hierfür ist der neue Höchstleistungsrechner, der in diesen Tagen am Jülicher Supercomputing Centre (JSC) an den Start geht. JUWELS ist ein Meilenstein hin zu einer neuen Generation von hochflexiblen modularen Supercomputern, die auf ein erweitertes Aufgabenspektrum abzielen – von Big-Data-Anwendungen bis hin zu rechenaufwändigen Simulationen. Allein mit seinem ersten Modul qualifizierte er sich als Nummer 1 der deutschen Rechner für die TOP500-Liste der schnellsten Computer der Welt, die heute erschienen ist.

Das System wird im Rahmen des von Bund und Sitzländern getragenen Gauß Centre for Supercomputing finanziert und eingesetzt.

Im Focus: Superconducting vortices quantize ordinary metal

Russian researchers together with their French colleagues discovered that a genuine feature of superconductors -- quantum Abrikosov vortices of supercurrent -- can also exist in an ordinary nonsuperconducting metal put into contact with a superconductor. The observation of these vortices provides direct evidence of induced quantum coherence. The pioneering experimental observation was supported by a first-ever numerical model that describes the induced vortices in finer detail.

These fundamental results, published in the journal Nature Communications, enable a better understanding and description of the processes occurring at the...

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Neueste Entwicklungen in Forschung und Technik

25.06.2018 | Veranstaltungen

Wheat Initiative holt Weizenforscher aus aller Welt an einen Tisch

25.06.2018 | Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Wendelstein 7-X erreicht Weltrekord

25.06.2018 | Physik Astronomie

Schnell und innovativ: Jülicher Superrechner ist eine Neuentwicklung aus Europa

25.06.2018 | Informationstechnologie

Leuchtfeuer in der Produktion

25.06.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics