Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stickstoff in Nadelform

17.07.2000


Stickstoff in Nadelform

Neue Methode zur Fixierung von Luftstickstoff

Unsere Luft besteht zu 78 Prozent aus Stickstoff. Trotz dieser Fülle kann man Luftstickstoff nicht so ohne weiteres nutzbar machen. Selbst Pflanzen müssen sich die benötigten Stickstoffverbindungen aus dem Humus holen oder sich auf den Landwirt verlassen, der mit der Güllespritze oder dem Kunstdünger anrückt.

Großtechnisch wird Luftstickstoff heute meist auf Basis des Haber-Bosch-Verfahrens in Form von Ammoniak gebunden. Der Hauptteil des Ammoniaks wird zu Düngemitteln weiterverarbeitet. Den Rest braucht die Chemische
Industrie als Ausgangsbasis für stickstoffhaltige Produkte.

Das Haber-Bosch-Verfahren ist aufwendig, denn es erfordert sehr hohe Drücke und Temperaturen. Unter milden Bedingungen - Raumtemperatur und Normaldruck - läuft dagegen eine neue, ausgesprochen unkonventionelle Methode der Stickstoff-Fixierung ab, die eine japanische Forschergruppe um Katsuyoshi Hoshina entwickelt hat: Auf einer Titanelektrode wird zunächst elektrochemisch
eine Titandioxidschicht erzeugt, darauf wird eine weitere Schicht aus einem elektrisch leitfähigen Polymer aufgebracht. Die Beschichtungen sind mit
Perchlorat-Ionen dotiert. Dieses Schichtsystem wird einer feuchten Stickstoffatmosphäre ausgesetzt und mit Weißlicht bestrahlt. Die frappierende Beobachtung: Abhängig von der Belichtungsstärke wachsen nach einigen Tagen bis Wochen Kristallnadeln aus der Polymermatrix heraus. Die Nadeln wurden als Ammoniumperchlorat identifiziert, einer Stickstoffverbindung, die bereits als Raketentreibstoff bekannt ist.

"Der Mechanismus der Nadelbildung und der Stickstoff-Fixierung ist noch nicht im Detail aufgeklärt," erläutert Hoshino. Soviel scheint allerdings klar: Das Licht erzeugt Ladungen an der Schichtgrenze zwischen Titandioxid und Polymer, die die Reaktion von Stickstoff mit adsorbiertem Wasser zu Ammoniak und Sauerstoff ermöglichen. Parallel entstehen freie Wasserstoff-Ionen, die sich mit Perchlorat-Ionen aus der Polymermatrix zu Perchlorsäure verbinden. In einer Säure-Base-Reaktion bildet sich aus Perchlorsäure und Ammoniak ein Salz: die beobachteten Ammoniumperchlorat-Nadeln.

"Das gängige Verfahren der Fixierung von Stickstoff erfordert harsche Bedingungen. Unsere milde Methode könnte sich daher zu einer interessanten Alternative entwickeln," zeigt sich Hoshino optimistisch.

Kontakt:

Prof. Dr.K. Hoshino
Faculty of Engineering
Chiba University
1-33 Yayoi, Inage,
Chiba 263-8522
Japan

Fax: (+81) 43-290-3490

E-mail: hoshino@image.tp.chiba-u.ac.jp

Quelle: Angewandte Chemie 2000, 112 (14), 2558 - 2561
Hrsg.: Gesellschaft Deutscher Chemiker (GDCh)

Dr. Kurt Begitt |

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Betazellfunktion im Tiermodell wiederhergestellt: Neue Wirkstoffkombination könnte Diabetes-Remission ermöglichen
21.02.2020 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Darmkrebs: Erhöhte Lebenserwartung dank individueller Therapien
20.02.2020 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Globale Datenbank für Karstquellenabflüsse

21.02.2020 | Geowissenschaften

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungsnachrichten

Langlebige Fachwerkbrücken aus Stahl einfacher bemessen

21.02.2020 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics