Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mechanismus der Ultraviolett-Wahrnehmung bei Fledermäusen entdeckt

09.10.2003


In den Tropen Mittel- und Südamerikas lebende und sich von Blütennektar ernährende Fledermäuse können ultraviolettes Licht sehen (Nature, 9. Oktober 2003). Das haben York Winter, Nachwuchsgruppenleiter an der Max-Planck-Forschungsstelle für Ornithologie in Seewiesen gemeinsam mit Kollegen von der Universität Erlangen und der Universität von Guatemala entdeckt. Da den Fledermäusen generell die Zapfenpigmente in ihren Augen fehlen, fangen sie das ultraviolette Licht über das Rhodopsin ihrer Stäbchenpigmente ein. Ein solcher Mechanismus war für Säugetiere bislang unbekannt. Die Forscher stießen darauf bei Verhaltensexperimenten in einem künstlichen Lebensraum, in dem die Fledermäuse mit computergesteuerten leuchtenden Blüten konfrontiert wurden. Blütenbesuchende Fledermäuse brauchen das UV-Sehen offenbar, weil die von ihnen im Regenwald besuchten Blüten im kalten Nachtlicht besonders stark das UV-Licht reflektieren. Ob die ungewöhnlich hohe UV-Empfindlichkeit auf einen für Säugetiere bislang unbekannten Photomechanismus zurückzuführen ist, bleibt noch eine offene Frage.



Höher entwickelte Säugetiere haben im Verlauf der Evolution die Fähigkeit zum Sehen ultravioletter (UV-) Strahlung verloren, ganz im Gegensatz zu Vögeln und niederen Wirbeltieren. Von den ursprünglich vier Zapfenpigmenten der Wirbeltiere besitzen Säugetiere nur noch zwei in ihren Augen. Folglich sind die meisten Säugetiere Dichromaten, erreichen also mit ihren Augen nur eine geringere Farbauflösung. Lediglich den Primaten hat eine Genverdopplung ein drittes Zapfenpigment und damit das hochauflösende, trichromatische Farbensehen zurückgegeben. Bei den nachtaktiven Fledermäusen ist die Reduktion des Sehapparates sogar noch ein Stück weiter gegangen: Sie haben die funktionellen Zapfen ganz verloren und verfügen nur noch über die Stäbchen als Rezeptoren. Stäbchen sind auch in der menschlichen Retina vorhanden und dort für das Hell-Dunkel-Sehen bei geringen Lichtintensitäten verantwortlich. Hingegen ist die Fähigkeit zum UV-Sehen bei den meisten Wirbeltierarten an ein spezialisiertes Zapfenpigment gebunden.



Das kalte Nachtlicht ist nur schwach. Doch sein Spektrum ist gegenüber dem Tageslicht zu den kurzen UV-Wellenlängen hin verschoben. Die von den Fledermäusen besuchten Blüten der südamerikanischen Regenwälder machen sich das zu Nutze, indem ihre Blätter ultraviolette Strahlung vermehrt reflektieren. Was macht nun ein Säugetier, wenn der Bedarf für die UV-Wahrnehmung wieder neu entsteht, aber die anatomische Struktur dafür nicht mehr vorhanden ist? Die blütenbesuchenden Fledermäuse nutzen ihren Stäbchenrezeptor auch zur UV-Wahrnehmung und fangen die UV-Photonen mit dem so genannten beta-Band, einem Nebenbereich der Lichtabsorption ihres Photorezeptors, ein. Bei diesen Säugetieren ist also nur ein einziger Rezeptor für den Strahlungsempfang über den gesamten Wellenlängenbereich von etwa 310 bis 600 Nanometer zuständig. Dabei erreichen d die Fledermäuse im beta-Bandbereich noch eine Lichtausbeute von fast 50 Prozent des Hauptmaximums (alpha-Band) ihres Photorezeptors. Dies ist fünfmal so hoch wie man nach in vitro Messungen vom beta-Band des Rhodopsin erwarten würde. Ob im Fledermausauge noch ein für Säugetiere bislang unbekannter Mechanismus des Strahlungsempfangs wirkt, bleibt vorerst noch offen.

Dass Fledermäuse UV-Licht wahrnehmen können, stellten die Forscher in psychophysischen Experimenten, also allein über Verhaltensexperimente fest. Dazu lernten die Tiere über viele Monate in einem computergesteuerten künstlichen Lebensraum, dass nur ’leuchtende’ Kunstblüten auch Futter geben. Die Fähigkeit der Fledermäuse, auf das Leuchten der Blüten zu reagieren, nutzten die Wissenschaftler dann, indem sie die Wellenlänge des Lichtes und seine Intensität variierten. Dies erbrachte den Nachweis, dass die Tiere noch bis weit in den UV-Bereich hinein das Licht der Blüten wahrnehmen können. Trotzdem sind Fledermäuse farbenblind. Dies zeigte die erfolglose Dressur auf Farbunterscheidung.

Sehrezeptoren sind in hellem Licht weniger empfindlich. Dies nutzten die Wissenschaftler, um die Ursache des Ultraviolettsehens bei den Fledermäusen zu ergründen. Dazu tauchten sie das künstliche Habitat der Fledermäuse in einfarbiges, monochromatisches Hintergrundlicht. Gleichzeitig wurde das Licht der Blüten immer dunkler geschaltet und auf diese Weise gemessen, bei welcher Leuchtstärke die Fledermäuse noch sehen können. Dieser Versuch wurde mit verschiedenen Hintergrundfarben, so genannten Adaptationslichtern, wiederholt. Hierbei zeigte sich, dass unabhängig von der Hintergrundfarbe die Sehempfindlichkeit der Tiere über den ganzen Wellenlängenbereich gleichmäßig nachließ. Das aber ist nur der Fall, wenn nur ein Photorezeptor im Auge wirkt.

Dass die Fledermäuse UV-tüchtig sind, liegt auch daran, dass ihnen der UV-Filter in ihrer Augenlinse fehlt. Normalerweise verschont die stark UV-absorbierende Linse das Säugetierauge vor UV-Strahlung. Denn UV-Licht schädigt nicht nur die Retinazellen, sondern ist auch aus optischen Gründen ungünstig: Der Brechwinkel des Lichtes ist abhängig von der Wellenlänge. Ein Lichtpunkt wird an der Linse, dem dioptrischen Apparat des Auges, gebrochen. Da jede Wellenlänge in einem etwas anderen Winkel abgelenkt wird, ist Unschärfe, chromatische Aberration, die Folge. Doch je kleiner ein Auge ist, desto weniger störend ist dieser Effekt. Deshalb erwartet man UV-Sehen auch am ehesten bei kleinen Säugetieren wie den Fledermäusen mit ihren nur zwei Millimeter großen Augen.

Die Suche nach UV-Tüchtigkeit bei Säugetieren hatte bislang ausschließlich spezialisierte Zapfen im Visier. Der neue Befund, der aus der Untersuchung des Orientierungsverhaltens der Tiere entstand, weist darauf hin, dass Säugetiere, die ohne Farbensehen auskommen, auch einen grundsätzlich anderen Mechanismus rekrutieren können. "Wir werden jetzt molekular untersuchen, ob dieser relativ einfache Mechanismus auch bei anderen Fledermausarten bzw. vielleicht sogar bei anderen Säugetieren auftritt," sagt York Winter, der Leiter der Nachwuchsgruppe "Ökologische Neurobiologie", die sowohl an der Fakultät für Biologie der Ludwig Maximilians-Universität München und der Max-Planck-Forschungsstelle für Ornithologie in Seewiesen tätig ist.

Weitere Informationen erhalten Sie von:

Priv.-Doz. Dr. York Winter
Max-Planck-Forschungsstelle für Ornithologie, Seewiesen
Tel.: 08157 / 932-233, Fax.: -251
E-Mail: winter@mpi-seewiesen.mpg.de

Dr. York Winter | Max-Planck-Gesellschaft
Weitere Informationen:
http://mpi-seewiesen.mpg.de

Weitere Berichte zu: Blüte Fledermaus Photorezeptor Säugetier UV-Licht UV-Sehen Wellenlänge Zapfenpigment

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Krebszellen Winterschlaf halten
16.07.2018 | Universitätsklinikum Carl Gustav Carus Dresden

nachricht Feinstaub macht Bäume anfälliger gegen Trockenheit
16.07.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetische Wirbel: Erstmals zwei magnetische Skyrmionenphasen in einem Material entdeckt

Erstmals entdeckte ein Forscherteam in einem Material zwei unabhängige Phasen mit magnetischen Wirbeln, sogenannten Skyrmionen. Die Physiker der Technischen Universitäten München und Dresden sowie von der Universität zu Köln können damit die Eigenschaften dieser für Grundlagenforschung und Anwendungen gleichermaßen interessanten Magnetstrukturen noch eingehender erforschen.

Strudel kennt jeder aus der Badewanne: Wenn das Wasser abgelassen wird, bilden sie sich kreisförmig um den Abfluss. Solche Wirbel sind im Allgemeinen sehr...

Im Focus: Neue Steuerung der Zellteilung entdeckt

Wenn eine Zelle sich teilt, werden sämtliche ihrer Bestandteile gleichmässig auf die Tochterzellen verteilt. UZH-Forschende haben nun ein Enzym identifiziert, das sicherstellt, dass auch Zellbestandteile ohne Membran korrekt aufgeteilt werden. Ihre Entdeckung eröffnet neue Möglichkeiten für die Behandlung von Krebs, neurodegenerative Krankheiten, Alterungsprozessen und Virusinfektionen.

Man kennt es aus der Küche: Werden Aceto balsamico und Olivenöl miteinander vermischt, trennen sich die beiden Flüssigkeiten. Runde Essigtropfen formen sich,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

Materialien für eine Nachhaltige Wasserwirtschaft – MachWas-Konferenz in Frankfurt am Main

11.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vertikales Begrünungssystem Biolit Vertical Green<sup>®</sup> auf Landesgartenschau Würzburg

16.07.2018 | Architektur Bauwesen

Feinstaub macht Bäume anfälliger gegen Trockenheit

16.07.2018 | Biowissenschaften Chemie

Wie Krebszellen Winterschlaf halten

16.07.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics