Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kristallstruktur des Photosystems II mit hoher Auflösung ermittelt

08.02.2001


Protein isoliert aus Cyanobakterium "Synechococcus elongatus"

Grüne Pflanzen, Algen und Cyanobakterien gewinnen ihre Energie durch Photosynthese. Mit Hilfe des Sonnenlichts wandeln sie Kohlendioxid und Wasser in Zucker und Sauerstoff um. Die chemische Grundgleichung ist sehr einfach, der Mechanismus jedoch äußerst kompliziert und noch nicht vollständig aufgeklärt. Zwei große Protein-Cofaktorkomplexe - Bestandteile der photosynthetischen Thykaloidmembran in den Chloroplasten - sind daran maßgeblich beteiligt: die Photosysteme I und II (PS I, PS II). Im PS II finden die ersten Teilschritte der Photosynthese statt. Hier werden den Wassermolekülen Elektronen mit Hilfe der Lichtenergie "entzogen", auf ein Chinonsystem übertragen und Sauerstoff in die Atmosphäre freigesetzt. PS II besteht aus einem Antennenkomplex, der die Lichtenergie einfängt (Chlorophyllmoleküle), einem zentralen Bereich mit Reaktionszentrum und einem sauerstoffentwickelnden Komplex.

Der Arbeitsgruppe um Prof. Wolfram Saenger, vom Institut für Chemie/Kristallographie der Freien Universität Berlin, gelang es nun mit Hilfe der Röntgendiffraktion, die Kristallstruktur von PS II zu ermitteln - bei einer Auflösung von 3.8 Å. Die Forschungsarbeiten wurden gemeinsam mit der Arbeitsgruppe um Prof. Horst-Tobias Witt und Dr. Petra Fromme vom Max-Volmer-Institut für Biophysikalische Chemie und Biochemie der TU Berlin durchgeführt. Hier wurde das Membranprotein - molekulare Masse etwa 700.000 Dalton - aus dem thermophilen Cyanobakterium "Synechococcus elongatus" isoliert, in Lösung gebracht und schließlich in vollständig hydratisierter Form kristallisiert.

Die FU-Kristallographen führten die Röntgendiffraktions-Experimente bei tiefen Temperaturen (100K) mittels Synchrotronstrahlung in Hamburg, Triest (I) und Grenoble (F) durch. Das so genannte Phasenproblem der Kristallographie wurde durch Schwermetalldotierung gelöst. Hierbei wird der Kristall mit einer Schwermetallsalzlösung getränkt, einzelne Metallatome in Form von Komplexen in den Kristall eingebaut. Erst nach diesem sehr langwierigen Schritt lassen sich die Phasenwinkel, damit die Elektronendichteverteilung im Molekül und letztlich die Gesamtstruktur ermitteln.

Das Protein PS II liegt im Kristall als C2-symmetrisches Dimer vor, mit einer Breite von 190 Å und einer Höhe von etwa 100 Å. Es besteht aus 17 Untereinheiten, von denen 14 innerhalb der Membran liegen. Die Auflösung von 3.8 Å ermöglicht zwar nicht den Blick auf jedes einzelne Atom, wohl aber auf Atomverbände und gibt damit genaue Details der Sekundär- und Tertiärstruktur preis. Eindeutig konnten Position und Struktur mehrerer Cofaktoren (32 Chlorophylle, 2 Phyllochinone, 2 Pheophytine, 2 Hämgruppen, 1 Eisenatom) sowie erste Umrisse der Struktur des sauerstoffentwickelnden Komplexes bestimmt werden - ein Cluster aus vier Manganatomen. An dieser Stelle werden die Wassermoleküle durch das Kation-Enzym P680+ schrittweise oxidiert und Sauerstoff sowie Wasserstoffionen freigesetzt. Letztere werden benutzt, um den Energiespeicher ATP zu synthetisieren.

An dem Projekt waren von Seiten der TU Berlin Horst-Tobias Witt, Athina Zouni, Jan Kern und Petra Fromme beteiligt. Die Struktur wurde von Wolfram Saenger, Norbert Krauß, und Peter Orth (FU Berlin) aufgeklärt. Am 8. Februar 2001 wurden die Forschungsergebnisse in "Nature" publiziert. Zur Zeit arbeitet das Team an einer Veröffentlichung über das Photosystem I, welches ähnlich komplizierter aufgebaut ist wie PS II und - bei einer Auflösung von 2.5 Å - noch wesentlich mehr Detail verspricht.

Die Grundlagenforschung wird von der Deutschen Forschungsgemeinschaft gefördert (Sfb 312 und Sfb 498). Sie soll zum besseren Verständnis der Photosynthese und damit generell der Umwandlung von Lichtenergie in chemische oder mechanische Energie beitragen. Eine notwendige Voraussetzung, um umwelt- und ressourcenschonende Energieformen für die Zukunft entwickeln zu können. Die Natur macht es in raffinierter Weise vor.

Catarina Pietschmann


Nähere Informationen gibt Ihnen gern:
Univ.-Prof. Dr. Wolfram Saenger, Fachbereich Biologie-Chemie-Pharmazie der Freien Universität Berlin, Institut für Chemie/Kristallographie, Takustr. 6, 14195 Berlin-Dahlem, Tel.: 030 / 838-53412, Fax: 030 / 838-56702, E-Mail: saenger@chemie.fu-berlin.de

Ilka Seer | idw

Weitere Berichte zu: Kristall Kristallstruktur Lichtenergie Photosystem Sauerstoff

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Optische Kontrolle von Herzfrequenz oder Insulinsekretion durch lichtschaltbaren Wirkstoff
17.07.2018 | Heinrich-Heine-Universität Düsseldorf

nachricht Künstliche neuronale Netze helfen, das Gehirn zu kartieren
17.07.2018 | Max-Planck-Institut für Neurobiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Optische Kontrolle von Herzfrequenz oder Insulinsekretion durch lichtschaltbaren Wirkstoff

17.07.2018 | Biowissenschaften Chemie

Umweltressourcen nachhaltig nutzen

17.07.2018 | Ökologie Umwelt- Naturschutz

Textilien 4.0: Smarte Kleidung und Wearables als Innovation

17.07.2018 | Innovative Produkte

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics