Kino im Kopf: Wie das Gehirn statische Bilder animiert

Serien solcher Glass-Muster suggerieren Bewegung

Wie das Gehirn statische Bilder animiert, haben Bochumer Neurobiologen zusammen mit einem internationalen Forscherteam herausgefunden: Anders als bisher angenommen, sind dabei Nervenzellen aktiv, die sonst für die Verarbeitung von Bewegungswahrnehmungen zuständig sind. Über die Ergebnisse berichten die Forscher in NATURE vom 7. August 2003.

Wenn der Comic-Superheld seinen Düsenantrieb anwirft, wird’s rasant – und das obwohl sich im Bild eigentlich gar nichts bewegt. Die Animation statischer Bilder übernimmt das Gehirn selbst. Was dabei passiert, hat ein Bochumer Forscherteam um den Neurobiologen Prof. Dr. Klaus-Peter Hoffmann in Zusammenarbeit mit Forschern am Salk Institute in San Diego, USA, und an der University of Western Australia herausgefunden: Anders als bisher angenommen, verarbeitet das Gehirn Informationen über Form und Bewegung nicht strikt getrennt. Die Nervenzellen, die für Bewegungen zuständig sind, sind auch bei der Betrachtung bestimmter statischer Formen aktiv. Über ihre Ergebnisse berichten sie im Wissenschaftsmagazin NATURE vom 7. August 2003.

Menschen und Affen sehen Bewegung im statischen Bild

In der bildenden Kunst und in Comic-Zeichnungen wird eine Bewegung oft durch geschickt platzierte statische Formen suggeriert, in Comics z. B. durch sog. „Bewegungsstreifen“. Wenn wir das Bild betrachten, erhalten wir den Eindruck eines sich bewegenden Objektes, ohne dass tatsächlich eine Bewegung im Bild stattfindet. Wie aber animiert unser Gehirn das Bild? Um dies herauszufinden, zeigten die Forscher Menschen und Affen Folgen von sog. Glass-Mustern (s. Abbildung). Sie enthalten keine wirkliche Bewegung, suggerieren dies aber durch die Anordnung der einzelnen Elemente, ähnlich wie die Bewegungsstreifen in Comics. Sowohl die Menschen als auch die Affen sahen Bewegung in diesen Mustern.

„Was“- und „wo“-Pfad im Gehirn

Ableitungen von Nervenzellen in der Hirnrinde der Affen zeigten, welche Hirnareale auf die Muster antworten. Die bisherige Annahme war, dass die Verarbeitung von Informationen über Form und Bewegungen strikt getrennt abläuft: Informationen über Form gelangen von der Sehrinde (primäres visuelles Areal der Hirnrinde) über den sog. „was“-Pfad zum Schläfenlappen (Temporalcortex) und dienen dort vor allem der Objekterkennung. Raum- und Bewegungsinformation gelangen über einen „wo“-Pfad zum Scheitellappen (Parietalcortex). Zur Überraschung der Forscher waren bei den Affen beim Betrachten der statischen Bilder Nervenzellen im Sulcus temporalis superior (STS) aktiv, einem Hirnbereich, der dem „wo“-Pfad angehört und damit eigentlich an der Verarbeitung realer Bewegungen beteiligt ist.

Scheinbare Bewegung beeinflusst die Wahrnehmung realer Bewegung

Dieselben STS-Nervenzellen antworten also sowohl auf eine reale als auch auf eine scheinbare Bewegung. „Es schloss sich daher die Frage an, ob scheinbare Bewegungen die reale Bewegungswahrnehmung beeinflussen“, erläutern die Autoren. Ein weiteres Experiment bestätigte diese Annahme. Zeigt man den Probanden – Menschen wie Affen – eine reale Bewegung mit einem Bewegungsstreifen, der leicht von der korrekten Richtung abweicht, so nehmen sie eine abgebogene Bewegungsrichtung wahr. Auch diese Abbiegung spiegelt sich in einer Änderung der Aktivität der STS-Nervenzellen.

Sich zurechtfinden in einer dynamischen Umwelt

„Diese neuen Ergebnisse erweitern die Kenntnisse über das visuelle System und zeigen deutlich, dass die Einteilung in getrennte Verarbeitungspfade für Form und Bewegung nicht absolut ist“, so die Forscher. „Das visuelle Bewegungssystem nutzt Informationen über Form, wenn damit die Deutung einer Szene verbessert werden kann.“ Möglicherweise hat das Bewegungswahrnehmungssystem eine Sensitivität für Form entwickelt, um die Detektion von schnellen Bewegungen zu verbessern. Beispiel: Ein fahrender Rennwagen. Bei hoher Geschwindigkeit verschwimmen Bilder, wobei dem Objekt horizontale Streifen zu folgen scheinen. Je schneller die Bewegung, desto schwieriger ist das Objekt erkennbar, desto einfacher jedoch die Streifen. So vervollständigt sich die Bewegungsverarbeitung; das visuelle System erreicht die Sensitivität, die es uns ermöglicht, uns in einer dynamischen Umwelt zurecht zu finden.

Weitere Informationen:

Prof. Dr. Klaus-Peter Hoffmann,
Lehrstuhl für Zoologie and Neurobiologie
der Ruhr Universität Bochum, 44780 Bochum
Tel. 0234 – 32-24364, Fax: -14185
E-Mail: kph@neurobiologie.ruhr-uni-bochum.de

Bart Krekelberg, Ph. D., Vision Center Laboratory
The Salk Institute, La Jolla, Ca, USA
E-Mail: bart@salk.edu

Media Contact

Dr. Josef König idw

Weitere Informationen:

http://www.nature.com

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer