Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Waffen von Killerzellen entschlüsselt

03.07.2003


Abb.: Schematische Darstellung der dreidimensional gefalteten Aminosäuren(Polypeptid)kette des humanen Granzym A. Zwei Protease-Einheiten aus der gleichen Polypeptidkette sind in der Mitte fest miteinander verbunden, das katalytische Zentrum der linken Einheit zeigt nach hinten, das der rechten nach vorne zum Betrachter. Die beiden katalytischen Zentren um das Serin herum sind durch einen gestrichelten Kreis hervorgehoben. Die beiden Protease-Einheiten können durch eine 180 Grad-Drehung um die angegebene Vertikalachse miteinander überlagert werden. Vorder- und Rückseite verhalten sich funktionell identisch.

Foto: Max-Planck-Institut für Neurobiologie


Max-Planck-Forscher haben 3D-Struktur eines wichtigen Abwehrenzyms aufgedeckt und neues kostengünstiges Herstellungsverfahren entwickelt

... mehr zu:
»Granzym »Killerzellen »Proteasen

Tumorzellen und viral infizierte Zellen bedrohen unser Leben Tag für Tag. Glücklicherweise verfügen wir in unserem Immunsystem über eine starke Leibwache von Killerzellen, die mit verschiedenen todbringenden Waffen - Proteasen oder Granzyme genannt - ausgerüstet sind und unerwünschte Zellen rechtzeitig eliminieren. Unter den circa 120 Proteasen des Menschen, die die Aminosäure Serin im ihrem Zentrum haben, verfügt das Granzym A als einzige über zwei identische katalytischen Köpfe. Wissenschaftler der Max-Planck-Institute für Biochemie und Neurobiologie in Martinsried bei München haben jetzt gemeinsam das Geheimnis dieses zweischneidigen Schwerts gelüftet und seine räumliche (dreidimensionale) Struktur bei hoher Auflösung analysiert (Nature Structural Biology 10, 535-540, Juli 2003). Diese Erkenntnisse sind wichtig für die Optimierung von Protease-Blockern, die bei Transplantationen, Autoimmunkrankheiten oder chronischen Infektionskrankheiten eingesetzt werden.

Die Granzyme A und B, zwei besonders intensiv erforschte Enzyme, sind hocheffiziente Katalysatoren des programmierten Zelltods und lösen eine explosionsartig ablaufende Kaskade von intrazellulären Prozessen aus, die zur Selbstauflösung und dem kompletten Abbau unerwünschter Körperzellen führen. Die selben lebensrettenden Proteasen können jedoch auch enorme destruktive Energien gegenüber Organtransplantaten, Spender-Stammzellen oder körpereigenen Geweben entfalten und verheerende Schäden an gesunden Zellen und Organen anrichten.


Granzym B erkennt besondere Sequenz-Motive an der Oberfläche von im Zytosol befindlichen Proenzymen, den Procaspasen, und wandelt diese Vorläufermoleküle durch selektiven Schnitt in der Nähe eines negativ geladenen Asparaginsäure-Restes in eine funktionell aktive Caspase um. Caspasen sind der intrazelluläre Motor eines universellen zellbiologischen Programms, das die Selbstzerstörung und geordnete Auflösung überflüssiger oder unerwünschter Zellen kontrolliert. Im Unterschied dazu erkennt Granzym A eine große Zahl von unterschiedlichen Oberflächen-Strukturen im Umgebungsbereich eines positiv geladenen Aminosäure-Restes und spaltet überwiegend Untereinheiten von großen Proteinkomplexen.

Die Max-Planck-Forscher Clara Hink-Schauer, Eva Estebanez-Perpina, Florian Kurschus, Wolfram Bode and Dieter E. Jenne haben nun mit Hilfe der Röntgenstrukturanalyse herausgefunden, dass die beiden miteinander verbundenen Molekülköpfe (-Einheiten) des Granzyms A in exakt entgegengesetzte Richtung zeigen und durch eine 180 Grad-Drehung ineinander überführt werden können (siehe Abbildung). Dadurch entstehen zwei funktionell gleichwertige Dimer-Oberflächen (Vorder- und Rückseite). Jede Moleküleinheit erfüllt eine doppelte Aufgabe: Mit der Rückseite des einen Moleküls wird die Beute festgehalten und dann dem Nachbarmolekül präsentiert. Dieses schneidet die Beute und gibt die beiden Bruchstücke rasch wieder frei. Wie ein zweischneidiges Schwert bahnt sich auf diese Weise das Granzym A seinen Weg durch komplexe Strukturen.

Zugleich ist es den Max-Planck-Forscher gelungen, ein neues, wesentlich kostengünstigeres Verfahren zur Herstellung von Granzym A zu entwickeln. Granzyme eigenen sich als Angriffspunkte für die Entwicklung neuartiger Medikamente, um eine Überreaktion des Immunsystems und die hierbei beobachteten Schäden durch Killerzellen zu verhindern. Das neue Herstellungsverfahren und die genaue Erfassung der dreidimensionalen Struktur des Granzym A sind wichtige Voraussetzungen, um vorhandene Protease-Blocker optimieren und neue entwickeln zu können. Derartige Inhibitoren könnten bei Transplantat-Abstoßung, Autoimmunkrankheiten, wie rheumatoider Arthritis oder Multipler Sklerose, und bei chronisch verlaufenden Infektionskrankheiten praktische Anwendung finden.

Originalveröffentlichung:
Clara Hink-Schauer, Eva Estébanez-Perpina, Florian C. Kurschus, Wolfram Bode & Dieter E. Jenne
Crystal structure of the apoptosis-inducing human granzyme A dimer

Weitere Informationen erhalten Sie von:

PD Dr. Dieter Jenne
Max-Planck-Institut für Neurobiologie, Martinsried bei München
Tel.: 089 8578 - 3588
Fax.: 089 89950180
E-Mail: djenne@neuro.mpg.de


Dr. Wolfram Bode
Max-Planck-Institut für Biochemie, Martinsried bei München
Tel.: 089 8578 - 2676
Fax.: 089 8578 - 3516
E-Mail: bode@biochem.mpg.de

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/instituteProjekteEinrichtungen/institutsauswahl/neurobiologie/index.html
http://www.mpg.de/instituteProjekteEinrichtungen/institutsauswahl/biochemie/index.html

Weitere Berichte zu: Granzym Killerzellen Proteasen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bei Depressionen ist Hirnregion zur Stresskontrolle vergrößert
20.09.2018 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Nanoreaktoren nach natürlichen Vorbildern gebaut
20.09.2018 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Im Focus: Bio-Kunststoffe nach Maß

Zusammenarbeit zwischen Chemikern aus Konstanz und Pennsylvania (USA) – gefördert im Programm „Internationale Spitzenforschung“ der Baden-Württemberg-Stiftung

Chemie kann manchmal eine Frage der richtigen Größe sein. Ein Beispiel hierfür sind Bio-Kunststoffe und die pflanzlichen Fettsäuren, aus denen sie hergestellt...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

Gesundheitstipps und ein virtueller Tauchgang zu Korallenriffen

20.09.2018 | Veranstaltungen

Internationale Experten der Orthopädietechnik tagen in Göttingen

19.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bei Depressionen ist Hirnregion zur Stresskontrolle vergrößert

20.09.2018 | Biowissenschaften Chemie

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungsnachrichten

Was Einstein noch nicht wusste

20.09.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics