Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Markierungsfreie Echtzeitanalysen von biomolekularen Interaktionen

20.05.2003


Nach der Aufklärung des Genoms vieler Organismen rückt heute die Frage nach der Wirkungsweise von Proteinen und deren Interaktion mit ihren Bindungspartnern immer mehr in den Vordergrund. Die kinetische Analyse des Netzwerks an Interaktionen in einer Zelle stellt einen eigenen Zweig der neuen Forschungsfelder „functional Genomics“ und „Proteomics“ dar.

Der Einsatz von Biosensoren basierend auf Oberflächen Plasmonresonanz (surface plasmon resonance SPR) ist ein exzellentes Werkzeug für markierungsfreie Echtzeituntersuchungen beliebiger biomolekularer Wechselwirkungen (biomolecular interaction analysis BIA). Ein entscheidender Vorteil von kinetischen Analysen mit SPR basierten Biosensoren gegenüber der klassischen steady-state-Analyse ist die separate Bestimmung von Assoziations- und Dissoziationsgeschwindigkeitskonstanten.

Vielfältige biologische Anwendungen inklusive einer detaillierten Analyse von Antigen-Antikörper-Wechselwirkungen sind möglich. Mit den gewonnenen Daten ergeben sich neue Möglichkeiten in der Entwicklung pharmazeutischer Wirkstoffe, der Charakterisierung humaner Pathogene und der Entwicklung therapeutischer Antikörper.

Weitere analytische Fragestellungen, bei denen die BIA-Technologie eingesetzt werden kann, sind beispielsweise:

  • Wie interagieren Proteine miteinander?
  • Wie wechselwirken einzelne Domänen?
  • Wie wirken Co-Faktoren und andere kleine Moleküle mit Proteinen?
  • Wie funktionieren katalytische Domänen?
  • Welche Aminosäuren sind direkt an der Proteinbindung beteiligt?
  • Welche Erkennungssequenzen gibt es zur Wechselwirkung mit anderen Molekülen?
  • Wie interagieren Transkriptionsfaktoren mit DNA?
  • Wie funktioniert Genregulation auf molekularer Ebene?
  • Haben synthetische Nukleinsäureoligonukleotide gleiche Hybridisierungseigenschaften wie die natürlichen Nukleinsäuren?
  • Welche Bindungseigenschaften hat mein neuer Antikörper?

Dieser Fragenkatalog für biomolekulare Wechselwirkungen lässt sich beliebig fortsetzen.
Die Biomolekulare Interaktionsanalyse kann bei der Klärung vieler dieser Aufgaben helfen.

Das Messprinzip

Das Messsystem besteht aus einem Sensor-Chip, einem optischen System für die Erzeugung und Detektion des SPR-Signals und einem integrierten Mikrofluss-System, dass den Transport der Proben über die Sensoroberfläche kontrolliert. Über einen Autosampler können die Proben automatisch in das Fluss-System injiziert werden.

Der Sensor-Chip besteht aus einer Glasscheibe, auf die eine dünne Goldschicht aufgebracht worden ist. Auf diese Goldoberfläche wurde eine biospezifische Matrix angebracht, die für die meisten Anwendungen aus carboxymethyliertem Dextran besteht. An dieses hydrophile Material können Biomoleküle als Ligand kovalent gekoppelt werden.

Der zweite Bindungspartner (der Analyt) wird mit Hilfe des Mikrofluss-Systems über diese Oberfläche geleitet, wobei die Wechselwirkung direkt “online” durch das Phänomen der Oberflächen Plasmonresonanz (surface plasmon resonance SPR) in Echtzeit verfolgt werden kann. Das Detektionssystem besteht aus einer LED, die Licht im nahen Infrarotbereich ausstrahlt, einem am Sensorchip fixiertem Glasprisma und einem positionsempfindlichen Diodenarraydetektor. Der refraktive Index der Chip-Oberfläche und damit auch das SPR-Signal ändert sich proportional zur Masse des gebundenen Analyten (ausreichende Empfindlichkeit selbst für kleine Moleküle ab 200 Dalton). Dieser Messwert wird in „response units“ RU angegeben, der ein direktes Maß für die Menge an gebundenem Analyten auf der Sensorchip-Oberfläche ist.

Der große Vorteil dieser Methode ist, dass sie ganz ohne Markierungen der Biomoleküle auskommt.

Beispiel einer Interaktionsanalyse

Die Abbildung (siehe oben) zeigt den typischen Verlauf einer biomolekularen Interaktionsanalyse. Während der Injektion des Analyten sieht man einen deutlichen Anstieg des SPR-Signals, was eine Bindung des Analyten an den auf der Biosensor-Oberfläche immobilisierten Liganden anzeigt. Aus der Kurvenform, der resultierenden Signalhöhe und den Konzentrationen des injizierten Analyten in einer Konzentrationsreihe können neben der Bestimmung der Stöchiometrie der Bindung sowohl Bindungsstärke (Affinität, KD-Wert) als auch die Geschwindigkeitskonstanten für Assoziation (kass) und Dissoziation (kdiss) berechnet werden. Damit sind auch Aussagen über die Geschwindigkeit der Komplexbildung und des Komplexzerfalls möglich.

Um die Dissoziationsphase in Vorbereitung weiterer Messungen abzukürzen, wird eine Regenerationslösung injiziert, die den gebundenen Analyten wieder von der Oberfläche entfernt. Idealerweise erhält man eine vollständige Regeneration ohne Verlust der Bindungsaktivität des immobilisierten Liganden, so dass mehrere Messreihen mit einem Biochip möglich sind.

Durch den Aufbau des Microchips mit vier parallelen Flusszellen ist es zum einen möglich, zeitgleich auf einer Kontrolloberfläche unspezifische Oberflächenbindung zu detektieren, zum anderen ist eine simultane Analyse mehrerer Liganden (z.B. verschiedene Isoformen oder Punktmutationen in Proteinen, verschiedene Präperationen, etc.) in direktem Vergleich möglich.

Vorteile der BIA-Technologie

  • anwendbar für alle Arten von Biomolekülen: Proteine (Enzyme, Antikörper), Peptide, Lipidmembranen, Nukleinsäuren (DNA, RNA, PNA), niedermolekulare Substanzen, Zellen, ...
  • Bestimmung von Affinitäten und Ratenkonstanten
  • minimaler Probenverbrauch
  • akkurat und reproduzierbar
  • keine Markierung der Interaktionspartner notwendig
  • Echtzeit-Detektion
  • Elution von gebundenem Material zur Identifizierung durch Massenspektrometrie

Unser Service-Angebot

Die Firma Biaffin GmbH & Co KG bietet Ihnen die Untersuchung von biomolekularen Interaktionen (BIA) als Servicedienstleistung an. Unser Angebot umfasst neben der qualitativen und quantitativen Antikörpercharakterisierung und Untersuchungen beliebiger Protein-, Peptid- und Nukleinsäureinteraktionen weitere Anwendungen aus den Bereichen Proteomics, Wirkstoffentwicklung (drug development), Prozessoptimierung und moderner Oberflächenentwicklung. Für die Entwicklung Ihres spezifischen Assays setzen Sie sich mit uns in Verbindung, wir helfen Ihnen gerne weiter.

Dr. Stephan Drewianka | Biaffin GmbH & Co KG
Weitere Informationen:
http://www.innovations-report.de/html/profile/profil-1117.html
http://www.biaffin.de

Weitere Berichte zu: Analyt Interaktion Protein Wechselwirkung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Infrarotsensor als neue Methode für die Wirkstoffentwicklung
19.07.2018 | Ruhr-Universität Bochum

nachricht Neues aus der Schaltzentrale
18.07.2018 | Karl-Franzens-Universität Graz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Automatisiertes Befüllen von Regalen im Einzelhandel

19.07.2018 | Verkehr Logistik

Mobilfunkstrahlung kann die Gedächtnisleistung bei Jugendlichen beeinträchtigen

19.07.2018 | Studien Analysen

Mit dem Nano-U-Boot gezielt gegen Kopfschmerzen und Tumore

19.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics