Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nano-Diamanten in Öl

09.05.2003


Forscher isolieren Cyclohexamantan, ein großes,


Diamant-ähnliches Molekül, aus Erdöl


Auch wenn sie nicht als Juwelen für die Freundin geeignet sind, zählen sie trotz ihrer Nanometer-Dimensionen letztlich doch zu den Diamanten: Cyclohexamantan-Moleküle gehören zur Verbindungsklasse der Diamondoide, ungewöhnlicher Kohlenwasserstoffe, deren käfigartig angeordnete Kohlenstoffatome einem Ausschnitt aus der Kristallstruktur von Diamant entsprechen. Forscher des Ölkonzerns ChevronTexaco fanden diese Nano-Diamanten vor kurzem in Rohöl.

Der einfachste Diamandoid heißt Adamantan und besteht aus zehn Kohlenstoffatomen, die genau einer einzelnen "Zelle" der Diamant-Struktur entsprechen. Über 20 verschiedene höhere Diamondoide, die aus bis zu elf Adamantan-Einheiten aufgebaut sind, konnten Jeremy E. P. Dahl und seine Mitstreiter identifizieren.


Nun haben Dahl und Forscherkollegen von ChevronTexaco, von mehreren amerikanischen und europäischen Universitäten sowie von Pfizer und BP einen speziellen Vertreter der Diamondoide, Cyclohexamantan, isoliert, genauer charakterisiert und dessen postulierte Struktur verifiziert. 26 Kohlenstoffatome bilden, wie erwartet, das Cyclohexamantan-Gerüst, sechs Adamantan-Einheiten sind so zu einem scheibenförmigen Molekül verschmolzen. An den Ecken ist der Kohlenstoff-Käfig mit insgesamt 30 Wasserstoffatomen abgesättigt.

Juweliere werden sich für Diamondoide zwar nicht begeistern können, Wissenschaftler sind dagegen fasziniert von den Nano-Diamanten, die nicht nur die Struktur mit ihren makroskopischen Vettern gemein haben, sondern auch deren außergewöhnliche Festigkeit und Stabilität. Gleichzeitig bieten die verschieden aufgebauten Moleküle eine enorme strukturelle Vielfalt. Da ihre Eckatome prinzipiell mit den verschiedensten funktionellen Gruppen versehen werden können, ist ebenso eine große chemische Vielseitigkeit gegeben. Diamondoide gelten damit als ideale Bausteine für die Nanotechnologie. Auch pharmakologische Anwendungen sind denkbar.

"Bisher ist es nicht gelungen, Cyclohexamantan auf synthetischem Wege herzustellen," berichtet Dahl. "Erdöl ist die bisher einzige bekannte Quelle. Wie Cyclohexamantan dort entstand, ist bislang unbekannt. Der Reaktionsweg, auf dem sie gebildet wurden, könnte aber im Prinzip zu noch größeren Diamondoiden geführt haben - bis hin zu mikrokristallinen Diamanten. Diese Hypothese prüfen wir derzeit."

Kontakt: Prof. J. E. P. Dahl
ChevronTexaco Energy Research & Technology Co.
P.O. Box 1627
Richmond
CA 94802
USA

Fax: (+1) (510) 242-1954
E-Mail: EDAH@ChevronTexaco.com


Angew. Chem. 2003, 115 (18), 1976 - 1979

ANGEWANDTE CHEMIE
Postfach 101161
D-69451 Weinheim
Tel.: 06201/606 321
Fax: 06201/606 331
E-Mail: angewandte@wiley-vch.de

Dr. Renate Hoer | idw
Weitere Informationen:
http://www.angewandte.org

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Ein neues Mittel gegen Zöliakie
24.09.2018 | Technische Universität Wien

nachricht Zika und Gelbfieber: Impfstoffe ohne Ei
21.09.2018 | Max-Planck-Institut für Dynamik komplexer technischer Systeme Magdeburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ein neues Mittel gegen Zöliakie

24.09.2018 | Biowissenschaften Chemie

Entscheidung über Attraktivität fällt in Millisekunden

24.09.2018 | Studien Analysen

Künstliche Intelligenz im Fokus – Schulungsangebot zum maschinellen Lernen für Industrie und Forschung startet

24.09.2018 | Seminare Workshops

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics