Moleküle kleben

Mit Hilfe eines Rastersondenmikroskops verbinden Forscher zwei einzelne dendritische Polymermoleküle

Moleküle einfach mit einer Pinzette greifen und nach Lust und Laune aneinander kleben, diese Vorstellung ist nicht im mindesten so absurd, wie sie sich anhören mag. Berliner Forschern um Jürgen P. Rabe und A. Dieter Schlüter ist dieses Kunststück gelungen. Ihre „Bastelei mit Molekülen“ ist ein wichtiger Schritt auf dem Weg zu molekularen Nanostrukturen für die Nanotechnologie.

Das Team, das sich aus Chemikern und Physikern von der Freien und der Humboldt Universität rekrutiert, arbeitet mit so genannten dendritischen Polymeren. Das sind lange Molekülketten aus voluminösen, wie ein Geäst verzweigten einzelnen Bausteinen. An ihren „Spitzen“ sind die verzweigten Bausteine mit Azid-Gruppen ausgestattet, funktionellen Gruppen, die – sobald sie z.B. durch UV-Licht aktiviert werden – hochreaktiv sind. Aufgetragen auf eine spezielle Unterlage sind die Molekülketten unter dem Rastersondenmikroskop als zylindrische Stränge zu erkennen. So kann man die Moleküle aber nicht nur beobachten, sondern auch manipulieren: Bei der Rastersondenmikroskopie tastet eine hauchfeine Spitze eine Oberfläche ab. Die Kräfte, die von dieser Spitze ausgehen, reichen aus, um winzigste Objekte – wie die Polymerstränge – wie mit einer Pinzette fest zu „greifen“ und sehr präzise auf der Unterlage zu verschieben. Die berliner Forscher bringen mit Hilfe der „Pinzetten“ zwei ihrer Polymerstränge in Kontakt. Anschließend werden diese mit UV-Licht bestrahlt, die nunmehr aktivierten Azid-Gruppen reagieren ab und sorgen dabei für eine feste chemische Bindung zwischen den beiden Strängen. Je nachdem, an welcher Stelle die Stränge verknüpft werden, lassen sich die verschiedensten Gebilde „basteln“, z.B. in Form eines X, Y, O oder einer 8. Dass die erzielte Verknüpfung auch hält, bewiesen die Forscher durch festes Auseinanderziehen der Stangenden.

Die Methode ist aber nicht auf Verbindungen unter dendritischen Polymersträngen beschränkt. Statt der langen Kettenmoleküle kann man analog den Kettenbausteinen aufgebaute, hochverzweigte kugelförmige Moleküle mit reaktiven Azid-Gruppen ausrüsten. Mit diesem „molekularen Klebstoff“ lassen sich prinzipiell alle Arten von Makromolekülen untereinander verknüpfen. Auch Hybrid-Strukturen zwischen völlig verschiedenen Typen von Nano-Objekten, etwa DNA und Kohlenstoff-Nanoröhrchen, scheinen so zugänglich.

Kontakt:

Prof. Dr. J. P. Rabe
Institut für Physik
Humboldt Universität Berlin
D-10099 Berlin, Germany
Fax: (+49) 30-2093-7632
E-mail: rabe@physik.hu-berlin.de

Media Contact

Dr. Renate Hoer idw

Weitere Informationen:

http://www.angewandte.org

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer