Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantensprung in der Naturstoff-Forschung: Vollautomatisierte Synthese mit PASS-Technologie möglich

20.11.2000


Die Prinzipskizze des neuen

miniaturisierten Durchflussreaktors.


Ein Verfahren, mit welchem Naturstoffe und ihre Derivate in miniaturisierten Durchflussreaktoren automatisiert hergestellt sowie anschließend direkt auf ihre Wirksamkeit getestet werden können, haben ein
Hannoveraner und ein Clausthaler Wissenschaftler zum Patent angemeldet. Eine erste Kooperation mit dem Arzneimittelhersteller Aventis wurde eingeleitet.

Medizinisch wirksame Naturstoffe und ihre Abwandlungen (Derivate) werden heute noch sehr mühselig, quasi von Hand nach der "Erlenmeyer-Methodik", im Labor synthetisiert. Jetzt haben Professor Dr. Andreas Kirschning vom Institut für Organische Chemie der Universität Hannover und Privatdozent Dr.-Ing. habil. Ulrich Kunz vom Institut für Chemische Verfahrenstechnik der TU Clausthal ein Verfahren zum Patent angemeldet, mit dem Naturstoffe und ihre Derivate in miniaturisierten Durchflussreaktoren automatisiert hergestellt und anschließend direkt auf ihre Wirksamkeit getestet werden können.

Die Wissenschaftler "kippen" dafür nur noch "oben" ihre Ausgangssubstanzen in mehrere Minidurchflussreaktoren, die jeweils für einen spezifischen Syntheseschritt "präpariert" sind: Durch ein poröses Glasrohr fließen die Substanzen in Lösung an mikrometergroßen Polymerkügelchen vorbei. Letztere sind mit chemisch bzw. katalytisch wirkenden Polymeren überzogen. Diese reagieren mit den Substanzen in Lösung und die Produkte verlassen den Reaktor am anderen Ende, wo sie analysiert werden können. Außerdem können die Produkte über Ventile von dort in den nächsten Minireaktor gepumpt werden, bis über mehrere Stufen so die Synthese eines komplexen Wirkstoffes komplett automatisiert erfolgt ist. In einem Massenspektrometer und einem qualitativen biologischen Wirksamkeitstest erfolgt die Analyse.

Dr.-Ing. habil. Ulrich Kunz steuerte die "ingenieurmäßige Hardware", den Durchflussreaktor, zum Gelingen des Projektes bei. Und die Arbeitsgruppe um Professor Dr. Andreas Kirschning, bis zum Sommer dieses Jahres im Institut für Organische Chemie der TU Clausthal beheimatet, kennt die chemisch oder katalytisch wirkenden Polymere. Sie sorgen auf den Oberflächen der Harzkügelchen für die Reaktion in der Lösung.

PASS steht für Polymer Assisted Solution-phase Synthesis. Der spätere Nobelpreisträger Merrifield hatte als Erster in den sechziger Jahren polymere Trägermaterialien zur automatisierten Synthese eingesetzt. Bei diesem Verfahren ist das Substrat während eines Mehrstufenprozesses an einem Polymer gebunden, während die Substanzen an dem Harz vorbeiströmen und sukzessive die Verbindung aufbauen. Zum Schluss wird die gewünschte synthetisierte Substanz an einer Sollbruchstelle vom Harz abgetrennt.

Professor Dr. Kirschning und Dr.-Ing. habil. Kunz haben nun dieser Methodik umgekehrt: Die Synthesebausteine "docken" nicht Schritt für Schritt an der festen Phase auf dem Polymer an, sondern sie umströmen auf ihrem Weg durch das poröse Glasrohr die Polymerkügelchen. Auf ihnen haften die chemischen Reaktionspartner oder Katalysatoren. Nach erfolgter Reaktion tritt die Substanz ihre Reise zum nächsten Syntheseschritt an. Gesteuert wird dieser Prozess mit Pumpen und über Ventile, die alle aus der chromatographischen HPLC-Technik bekannt sind. D. h. der neuartige Mikroreaktor ist vorteilhaft in eine etablierte, periphere Technik eingepasst.

Diese neuartige Synthesetechnologie erleichtert die Arbeit des Chemikers erheblich, weil jegliche arbeitsintensive und schwer zu automatisierende Reinigung entfällt. Die chemischen Reaktionspartner, die am Polymer gebunden sind können im Überschuss eingesetzt werden. So wird ein hoher Umsatz erzielt. Die Produkte können deshalb wesentlich leichter anschließend isoliert und das Reagenz oder der Katalysator nach erfolgter Regeneration problemlos wiederverwendet werden.

Eine erste Kooperation zur Erprobung der PASS-Technologie mit dem Arzneimittelhersteller Aventis wurde eingeleitet.

Weitere Informationen:
Prof. Dr. Andreas Kirschning
Institut für Organische Chemie
Universität Hannover
Schneiderberg 1B
D-30167 Hannover
Tel.: (+49) 511 762 4613/14
Fax.: (+49) 511 762 3011
E-Mail: Andreas.Kirschning@oci.uni-hannover.de

Institut für Chemische Verfahrenstechnik
Dr.-Ing. habil. Ulrich Kunz
Leibnizstraße 17
D-38678 Clausthal-Zellerfeld
Telefon: ++49 (0)5323 72 2181
Telefax : ++49 (0)5323 72 2182
E-Mail : kunz@icvt.tu-clausthal.de

Weitere Informationen finden Sie im WWW:

Jochen Brinkmann | idw

Weitere Berichte zu: Derivate Durchflussreaktor PASS-Technologie Polymer Synthese

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Beleuchtung von Höhlen vertreibt Fledermäuse – die Farbe des Lichts spielt nur untergeordnete Rolle
11.12.2019 | Forschungsverbund Berlin e.V.

nachricht Molekulare Milch-Mayonnaise: Wie Mundgefühl und mikroskopische Eigenschaften bei Mayonnaise zusammenhängen
11.12.2019 | Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochgeladenes Ion bahnt den Weg zu neuer Physik

In einer experimentell-theoretischen Gemeinschaftsarbeit hat am Heidelberger MPI für Kernphysik ein internationales Physiker-Team erstmals eine Orbitalkreuzung im hochgeladenen Ion Pr9+ nachgewiesen. Mittels einer Elektronenstrahl-Ionenfalle haben sie optische Spektren aufgenommen und anhand von Atomstrukturrechnungen analysiert. Ein hierfür erwarteter Übergang von nHz-Breite wurde identifiziert und seine Energie mit hoher Präzision bestimmt. Die Theorie sagt für diese „Uhrenlinie“ eine sehr große Empfindlichkeit auf neue Physik und zugleich eine extrem geringe Anfälligkeit gegenüber externen Störungen voraus, was sie zu einem einzigartigen Kandidaten zukünftiger Präzisionsstudien macht.

Laserspektroskopie neutraler Atome und einfach geladener Ionen hat während der vergangenen Jahrzehnte Dank einer Serie technologischer Fortschritte eine...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: Wie Graphen-Nanostrukturen magnetisch werden

Graphen, eine zweidimensionale Struktur aus Kohlenstoff, ist ein Material mit hervorragenden mechanischen, elektronischen und optischen Eigenschaften. Doch für magnetische Anwendungen schien es bislang nicht nutzbar. Forschern der Empa ist es gemeinsam mit internationalen Partnern nun gelungen, ein in den 1970er Jahren vorhergesagtes Molekül zu synthetisieren, welches beweist, dass Graphen-Nanostrukturen in ganz bestimmten Formen magnetische Eigenschaften aufweisen, die künftige spintronische Anwendungen erlauben könnten. Die Ergebnisse sind eben im renommierten Fachmagazin Nature Nanotechnology erschienen.

Graphen-Nanostrukturen (auch Nanographene genannt) können, je nach Form und Ausrichtung der Ränder, ganz unterschiedliche Eigenschaften besitzen - zum Beispiel...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Analyse internationaler Finanzmärkte

10.12.2019 | Veranstaltungen

QURATOR 2020 – weltweit erste Konferenz für Kuratierungstechnologien

04.12.2019 | Veranstaltungen

Die Zukunft der Arbeit

03.12.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kein Seemannsgarn: Hochseeschifffahrt soll schadstoffärmer werden

11.12.2019 | Ökologie Umwelt- Naturschutz

Vernetzte Produktion in Echtzeit: Deutsch-schwedisches Testbed geht in die zweite Phase

11.12.2019 | Informationstechnologie

Verbesserte Architekturgläser durch Plasmabehandlung – Reinigung, Vorbehandlung & Haftungssteigerung

11.12.2019 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics