Codierte Synthesen

DNA als Matrize für die Synthese chemischer Verbindungen

Das Handwerkszeug der Natur ist das beste. Finden jedenfalls David R. Liu und sein Team von der Harvard University in Cambridge (USA), die völlig neue Wege bei der Wirkstoffsuche und der Synthese neuer Verbindungen einschlagen: Sie kuppeln Reagentien an Desoxyribonucleinsäure (DNA) und nutzen die einzigartige Fähigkeit des Erb-Moleküls zur Codierung von Information.

Und so geht es: An das Ende eines langen DNA-Einzelstrangs, der „Matrize“, wird ein Molekül gebunden. Den gewünschten Reaktionspartner kuppeln die Forscher an das Ende eines kurzen DNA-Fragmentes. Dieses ist komplementär zu einer Sequenz auf der Matrize, an die es bindet. Durch die so erzwungene Nähe der beiden Reaktanten kann man sogar Reaktionen zwischen Partnern vermitteln, die normalerweise nichts von einander wissen wollen.

Soll gezielt nach einer Verbindung mit speziellen Eigenschaften, etwa nach einem Pharma-Wirkstoff, gesucht werden, kuppelt man das Molekül an eine große Zahl nach dem Zufallsprinzip erzeugter Matrizen mit demzufolge unterschiedlichen Sequenzen. Im folgenden Reaktionsschritt kann ein ganzes Heer verschiedener Reagentien auf diese Matrizen losgelassen werden, die jeweils an verschiedene – genau definierte – kurze DNA-Fragmente gekuppelt sind. Mit hoher Wahrscheinlichkeit finden die meisten dieser Fragmente eine komplementäre Sequenz auf einer der Matrizen und binden daran. Hunderte bis Tausende unterschiedlicher Verbindungen können so gleichzeitig im selben Reaktionsgefäß synthetisiert werden. Findet sich darunter ein geeigneter Wirkstoff-Kanndidat, braucht man nur dessen DNA zu sequenzieren. Sie gibt seine Identität preis.

Der Haken dabei: Es gibt Reaktionstypen, die nur ablaufen, wenn beide Reaktionspartner direkt neben einander zu liegen kommen – die zum DNA-Fragment passende Sequenz auf der Matrize sich also genau neben dem gebundenen Molekül befindet. Bindet das Fragment an einer weiter entfernten Stelle, findet keine Reaktion statt. Nun haben Liu und seine Mitstreiter eine elegante Lösung gefunden: Alle Matrizen tragen an dem Ende, an dem das Molekül gebunden ist, ein kleines einheitliches Sequenzstück. Und alle DNA-Fragmente beginnen am Reagenz-tragenden Ende mit dem dazu komplementären Abschnitt. Bei einer Paarung bindet das Fragment die Matrize somit an zwei Stellen. Der dazwischen liegende ungepaarte Bereich der Matrize schlägt eine Schlaufe, die an den griechischen Buchstaben Omega (W) erinnert – zur so genannten Omega-Form.

Und die Chemiker hatten eine weitere pfiffige Idee: Statt an ein Ende kann man das Molekül auch in die Mitte der Matrize hängen. Dann können zwei DNA-Fragmente gleichzeitig von beiden Seiten andocken – die so genannte T-Form. Neuartige Reaktionen zwischen drei Partnern werden so möglich.

Kontakt:

Prof. D. R. Liu
Department of Chemistry and Chemical Biology
Harvard University, 12 Oxford Street
Cambridge, MA 02138, USA
Fax: (+1) 617-496-5688
E-mail: drliu@fas.harvard

ANGEWANDTE CHEMIE
Postfach 101161
D-69451 Weinheim
Tel.: 06201/606 321
Fax: 06201/606 331
E-Mail: angewandte@wiley-vch.de

Media Contact

Dr. Renate Hoer idw

Weitere Informationen:

http://www.angewandte.org

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ideen für die Zukunft

TU Berlin präsentiert sich vom 22. bis 26. April 2024 mit neun Projekten auf der Hannover Messe 2024. Die HANNOVER MESSE gilt als die Weltleitmesse der Industrie. Ihr diesjähriger Schwerpunkt…

Peptide auf interstellarem Eis

Dass einfache Peptide auf kosmischen Staubkörnern entstehen können, wurde vom Forschungsteam um Dr. Serge Krasnokutski vom Astrophysikalischen Labor des Max-Planck-Instituts für Astronomie an der Universität Jena bereits gezeigt. Bisher ging…

Wasserstoff-Produktion in der heimischen Garage

Forschungsteam der Frankfurt UAS entwickelt Prototyp für Privathaushalte: Förderzusage vom Land Hessen für 2. Projektphase. Wasserstoff als Energieträger der Zukunft ist nicht frei verfügbar, sondern muss aufwendig hergestellt werden. Das…

Partner & Förderer