Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Tor zum Kraftwerk des Lebens

19.03.2003


Mitochondrien, die "Kraftwerke" der Zellen, enthalten mehrere hundert verschiedene Proteine, von denen sie nur wenige selbst produzieren können. Alle anderen Proteine müssen auf komplizierten Wegen aus dem Zellinneren importiert werden. Auf welchem Weg dies geschieht, haben jetzt Wissenschaftler des Max-Planck-Instituts in Frankfurt/Main gemeinsam mit zwei Arbeitsgruppen der Universitäten Freiburg und Osnabrück bis ins molekulare Detail hinein aufgeklärt. Sie berichten in der internationalen Fachzeitschrift Science (Science, 14. März 2003), wie lebensnotwendige Boten-Proteine über zweiporige Kanäle in der inneren Hülle des "Zell-Kraftwerks" landen. Diese molekularen Einblicke sind sehr wichtig, da schwerwiegende neurodegenerative Erkrankungen wie das Mohr-Tranebjaerg-Syndrom auftreten können, wenn die für den Import der Botenmoleküle verantwortlichen Proteine defekt sind.


Abb. 1: Der Aufbau eines Mitochondriums.

Grafik: Max-Planck-Institut für Biophysik


Abb. 2: Die zwei Haupt-Importwege für Vorstufenproteine in das Mitochondrium. Eingefügt sind zwei elektronenmikroskopische Mittelungsbilder (rechts). Oben: Multiproteinschleuse in der Außenmembran (TOM Komplex), unten: Multiproteinschleuse in der Innenmembran (TIM22 Komplex). (R= Rezeptor, GIP= Generelle Import Pore)

Grafik: Max-Planck-Institut für Biophysik



Eiweißmoleküle (Proteine) sind nahezu an allen Lebensprozessen beteiligt. Zu Tausenden kommen diese verschiedenen lebenswichtigen Moleküle in jeder Zelle eines Organismus vor. Die Energie für die Arbeit in den Zellen liefern eigene "Kraftwerke", die Mitochondrien. Jedes dieser "Kraftwerke" ist von einer inneren und einer äußeren Membranhülle umgeben. Sie arbeiten in allen Lebewesen gleich und steuern die Energieproduktion. Treten Funktionsstörungen in diesen "Kraftwerken" auf, kann das zu Zellschädigungen bis hin zum Zelltod führen. Ausgelöst werden sie beispielsweise durch eine beeinträchtigte Energieproduktion, einen unausgeglichenen Kalziumhaushalt, oxidativen Stress oder das verhinderte Einschleusen lebenswichtiger Proteine durch die mitochondriale Doppelmembran. In letzterem Fall kann das beim Menschen ein Syndrom auslösen, das bis zur Taubheit führt (Mohr-Tranebjaerg-Syndrom). Deshalb ist es wichtig, die komplexen Mechanismen zum Einschleusen der Proteine in das "Kraftwerk des Lebens" zu erforschen.



Diverse Proteine werden quasi als "Kraftwerk-Bausteine" über Multiprotein-Schleusen (Translokasen) in das Mitochondrium transportiert. Die erste Importmaschine ist der so genannte TOM-Komplex, der den Durchgang durch die äußere Membran über eine gemeinsame Pore (GIP, Generelle Import Pore) regelt. Für das Eindringen in die Innenmembran trennen sich dann die Wege, je nachdem, um was für ein Protein es sich handelt. Man unterscheidet zwei große Gruppen von Vorstufenproteinen: spaltbare Proteine mit einem einzigen Signal, ähnlich einer Kennzahl, an einem Ende und nicht spaltbare Boten-Proteine mit mehreren internen Signalen. Die ersten werden durch ihre "Spezial-Pforte", den sogenannten TIM23-Komplex, eingeschleust. Hingegen erreichen die "Botenträger" die Innenmembran der "Powerstation" durch den TIM22-Komplex.

Bisher war nicht bekannt, wie dieser TIM22-Komplex funktioniert. Das konnten die Max-Planck-Forscher jetzt gemeinsam mit ihren Partnern mittels biochemischer, elektronenmikroskopischer und elektrophysiologischer Untersuchungen an einzelnen Komplex-Partikeln ermitteln. Um zu erfahren, was sich genau in dieser "Schleuse" abspielt, mussten die Wissenschaftler zunächst den Protein-Komplex aus dem Modellorganismus der Bäckerhefe isolieren. Das war nicht leicht, weil dieser essentielle Komplex in der Innenmembran des "Kraftwerkes" nicht gerade häufig vorkommt. Wissenschaftlern am Institut für Biochemie und Molekularbiologie in Freiburg gelang es jedoch, den TIM22-Komplex in ausreichenden Mengen so sauber aus der Innenmembran herauszulösen, dass die einzelnen Partikel unter dem Elektronenmikroskop sichtbar gemacht werden konnten. Dadurch wurde es erstmalig möglich, diese regulierte Pore der Innenmembran genauer zu beschreiben. Doch die sehr kleinen, nur elf Nanometer langen Einzelpartikel erforderten eine optimierte Methode für ihre Klassifizierung. Diese Charakterisierung gelang dann am Max-Planck-Institut für Biophysik in Frankfurt/M.: Dabei stellte sich heraus, dass die TIM22-"Schleuse" aus zwei physikalischen Öffnungen besteht. Elektrophysiologische Messungen in der Biophysik der Universität Osnabrück ergaben dann, dass es sich dabei um zwei gekoppelte Transportkanäle handelt.

Der Durchmesser der Kanäle ist nachweislich kleiner als die General Import Pore. Das ist notwendig, weil der Transport über die Innenmembran sehr streng reguliert sein muss, um kein Leck zu riskieren. Denn während des Imports muss das Konzentrationsgefälle (Membranpotential) über der Innenmembran aufrechterhalten bleiben, um weiterhin eine reibungslose Energiegewinnung in der "Powerstation" zu gewährleisten. In einem ersten Schritt legt das Boten-Protein dann lose - mit Hilfe von kleinen Tim-Proteinen - am TIM22-Komplex an. Im zweiten Schritt dockt es richtig an, wofür es ein bestimmtes Membranpotential benötigt. Doch erst in der dritten Phase wird der Kanal durch maximale Spannung und durch die Gegenwart des zu transportierenden Boten-Proteins voll aktiviert und reguliert. Ist das Boten-Protein dann in der Innenmembran erfolgreich eingebaut, kann es seine Funktion ausüben. Diese besteht unter anderem darin, wie ein "Shuttle" das ATP als Energiespeicher aus dem Innern des "Kraftwerkes" zu seinen "Verbrauchern" nach außen in die Zelle zu transportieren und leere Energiespeicher-Moleküle wieder ins "Kraftwerk" zurück zu schleusen, um sie dort wieder aufzufüllen.

Dass der Protein-Import in die Mitochondrien einwandfrei funktioniert, ist nicht nur für die einzelne Zelle lebensnotwendig, meint Max-Planck-Forscherin Kirstin Model. Inzwischen gibt es viele Erkrankungen, bei denen die Mitochondrien als Ursache mit in Betracht gezogen werden.


Weitere Informationen erhalten Sie von:

Dr. Kirstin Model
Max-Planck-Institut für Biophysik
Marie-Curie-Str. 15
60439 Frankfurt am Main
Bis 1. April 2003:
Tel.: 0 69 / 6 78 08 - 30 05
Fax: 0 69 / 6 78 08 - 30 02
Ab 1. April 2003:
Tel.: 0 69 / 63 03 - 30 05
Fax: 0 69 / 63 03 - 30 02
E-Mail: Kirstin.Model@mpibp-frankfurt.mpg.de

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.biophys.mpg.de/model
http://www.biophys.mpg.de/

Weitere Berichte zu: Boten-Protein Innenmembran Mitochondrium Protein TIM22-Komplex

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics