Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit dem Laser einzelnen Molekülen auf der Spur

28.01.2003



Manche Medikamente helfen, und niemand weiß, warum. In Zukunft könnte ihnen das Aus drohen: In Anbetracht leerer Kassen werden die Versicherungen zukünftig wohl verstärkt nur für solche Arzneien aufkommen, bei denen das Wirkprinzip oder zumindest der Wirkstoff bekannt sind. Die Floureszenz-Korrelations-Spektroskopie (FCS) hilft Pharma-Forschern zu verstehen, wie Arzneimittel in der lebenden Zelle wirken.

... mehr zu:
»Adrenalin »FCS »Molekül »Rezeptor »Zelle

Einer der wenigen deutschen Experten auf diesem noch jungen Gebiet ist Professor Dr. Hanns Häberlein, der nun an der Universität Bonn die neue Stiftungsprofessur für "Zellbiologie und molekulare Wirkstoffforschung" angetreten hat. Die Firma Engelhard Arzneimittel finanziert die Professur in den nächsten fünf Jahren mit insgesamt 500.000 Euro.

Als Professor Häberlein 1996 damit begann, die vielversprechende Methode anzuwenden, gehörte er zu den wenigen Exoten in der deutschen Wissenschaftslandschaft, die sich mit FCS beschäftigten. In den letzten Jahren hat er die Methode so weiter entwickelt, dass man sie auch an lebenden Zellen anwenden kann. Über dieses Know-how verfügen bisher nur eine Handvoll deutscher Forscher - eine Tatsache, die der Arzneimittel-Hersteller Engelhard durch die Stiftung der Professur für "Zellbiologie und molekulare Wirkstoffforschung" ändern möchte.


Die FCS erlaubt es, einzelne Moleküle unter die Lupe zu nehmen. Einzige Voraussetzung: Die Substanzen, die untersucht werden sollen, müssen fluoreszieren. Als "Fluoreszenz" bezeichnen Chemiker die Fähigkeit mancher Stoffe, bei Lichteinfall farbig zu leuchten. Sofern sie das nicht schon von Natur aus tun, lässt sich das meist durch entsprechende chemische Veränderungen erreichen. Bei der FCS nutzt man diese Eigenschaft, um zu untersuchen, inwieweit bestimmte Moleküle miteinander in Kontakt treten.

Viele Moleküle in einem Organismus haben einzig und allein die Aufgabe, Informationen von einem Ort zum anderen zu transportieren. So schüttet der Körper bei Gefahr Adrenalin aus, das unter anderem der Leber "befiehlt", energiereiche Glucose zur Verfügung zu stellen, die die Beinmuskulatur bei der Flucht als "Treibstoff" dringend benötigt. Signalmoleküle wie das Adrenalin "docken" dazu an bestimmte Rezeptoren an. Rezeptoren sind Eiweiße auf der Oberfläche von Zellen, die dann die nötigen Stoffwechselreaktionen in der Zelle veranlassen. Mit der FCS können Forscher derartige Vorgänge beobachten: Dazu beleuchten die Wissenschaftler beispielsweise einen winzigen Bereich auf der Zelloberfläche mit einem Laserstrahl. Wenn das zu untersuchende Molekül in den Lichtstrahl tritt, beginnt es zu leuchten; ein hochempfindliches Messgerät erfasst dieses Licht, das man auch als Fluoreszenzsignal bezeichnet. Kleine Moleküle wie das Adrenalin bewegen sich sehr schnell durch den beleuchteten Bereich und werden daher nur für eine kurze Zeit vom Laserstrahl erfasst: Das Fluoreszenzsignal steigt nur kurz an und sinkt dann wieder ab. Größere Moleküle wie z.B. Eiweiße brauchen dagegen länger, um den Strahl zu durchqueren; das Fluoreszenzsignal hält länger an. Sobald daher das Adrenalin an einen Rezeptor auf der Zelloberfläche andockt, verlangsamt es sich, weil der Komplex aus Rezeptor und Adrenalin viel größer ist als das Adrenalin allein. Komplex und Einzelmoleküle lassen sich daher durch ihre verschiedenen Geschwindigkeiten einfach voneinander unterscheiden - und zwar direkt bei lebenden Zellen. Dies ermöglicht eine Vielzahl neuartiger Untersuchungen.

Die Methode ist insbesondere für Wirkstoffforscher hochinteressant: Ob die Betäubungsspritze beim Zahnarzt oder das Medikament gegen Fieber: Fast alle entfalten ihre Wirkung, indem sie mit Eiweißen (Rezeptoren oder Enzymen) in Kontakt treten und dadurch bestimmte Reaktionen in der entsprechenden Zelle hervorrufen. Häufig möchten die Pharmakologen den Kontakt zwischen Wirkstoff und Rezeptor verbessern, indem sie den Wirkstoff chemisch verändern. Mit der FCS können sie an der lebenden Zelle den Erfolg ihrer Maßnahme kontrollieren.

"Mit unseren Messungen an lebenden Lungenepithelzellen haben wir völliges Neuland betreten", erklärt Professor Häberlein: Vor allem die große Hintergrundfluoreszenz macht die Arbeit mit ganzen Zellen so schwierig, dass sich bislang nur wenige Teams mit dieser Aufgabe beschäftigen. Der Wissenschaftler versteht sich als sinnvolle Ergänzung des Bonner Instituts für Physiologische Chemie: Schließlich biete die zellbiologische Forschung in Bonn - vertreten durch die Arbeitsgruppen von Professor Dr. Volkmar Gieselmann, Professor Dr. Thomas Magin und Professor Dr. Ernst Bause - hervorragende Möglichkeiten, auch auf dem Gebiet der Wirkstoffforschung zu kooperieren. "Mit der Etablierung der Fluoreszenz-Korrelations-Spektroskopie versuche ich dazu beizutragen, die molekulare Interaktion in lebenden Zellen besser zu verstehen."

Ansprechpartner:

Professor Dr. Hanns Häberlein
Institut für Physiologische Chemie der Universität Bonn
Telefon: 0228/73-6555
E-Mail: haeberlein@institut.physiochem.uni-bonn.de


Frank Luerweg | idw
Weitere Informationen:
http://www.uni-bonn.de/Aktuelles/Presseinformationen

Weitere Berichte zu: Adrenalin FCS Molekül Rezeptor Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Alterungsprozesse im Tiermodell rückgängig gemacht
06.07.2020 | Universität Bern

nachricht Organisiertes Chaos im Enzymkomplex: überraschende Einsichten und neue Angriffspunkte
06.07.2020 | Max-Planck-Institut für Entwicklungsbiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neues Verständnis der Defektbildung an Silizium-Elektroden

Theoretisch lässt sich das Speichervermögen von handelsüblichen Lithiumionen-Batterien noch vervielfachen – mit einer Elektrode, die auf Silizium anstatt auf Graphit basiert. Doch in der Praxis machen solche Akkus mit Silizium-Anoden nach wenigen Lade-Entlade-Zyklen schlapp. Ein internationales Team um Forscher des Jülicher Instituts für Energie- und Klimaforschung hat jetzt in einzigartiger Detailgenauigkeit beobachtet, wie sich die Defekte in der Anode ausbilden. Dabei entdeckten sie bislang unbekannte strukturelle Inhomogenitäten in der Grenzschicht zwischen Anode und Elektrolyt. Die Erkenntnisse sind in der Fachzeitschrift „Nature Communications“ erschienen.

Silizium-basierte Anoden können in Lithium-Ionen-Akkus prinzipiell neunmal so viel Ladung speichern wie der üblicherweise verwendete Graphit, bei gleichem...

Im Focus: Ein neuer Weg zur superschnellen Bewegung von Flussschläuchen in Supraleitern entdeckt

Ein internationales Team von Wissenschaftern aus Österreich, Deutschland und der Ukraine hat ein neues supraleitendes System gefunden, in dem sich magnetische Flussquanten mit Geschwindigkeiten von 10-15 km/s bewegen können. Dies erschließt Untersuchungen der reichen Physik nichtlinearer kollektiver Systeme und macht einen Nb-C-Supraleiter zu einem idealen Materialkandidaten für Einzelphotonen-Detektoren. Die Ergebnisse sind in Nature Communications veröffentlicht.

Supraleitung ist ein physikalisches Phänomen, das bei niedrigen Temperaturen in vielen Materialien auftritt und das sich durch einen verschwindenden...

Im Focus: Elektronen auf der Überholspur

Solarzellen auf Basis von Perowskitverbindungen könnten bald die Stromgewinnung aus Sonnenlicht noch effizienter und günstiger machen. Bereits heute übersteigt die Labor-Effizienz dieser Perowskit-Solarzellen die der bekannten Silizium-Solarzellen. Ein internationales Team um Stefan Weber vom Max-Planck-Institut für Polymerforschung (MPI-P) in Mainz hat mikroskopische Strukturen in Perowskit-Kristallen gefunden, die den Ladungstransport in der Solarzelle lenken können. Eine geschickte Ausrichtung dieser „Elektronen-Autobahnen“ könnte Perowskit-Solarzellen noch leistungsfähiger machen.

Solarzellen wandeln das Licht der Sonne in elektrischen Strom um. Dabei wird die Energie des Lichts von den Elektronen des Materials im Inneren der Zelle...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: Das leichteste elektromagnetische Abschirmmaterial der Welt

Empa-Forschern ist es gelungen, Aerogele für die Mikroelektronik nutzbar zu machen: Aerogele auf Basis von Zellulose-Nanofasern können elektromagnetische Strahlung in weiten Frequenzbereichen wirksam abschirmen – und sind bezüglich Gewicht konkurrenzlos.

Elektromotoren und elektronische Geräte erzeugen elektromagnetische Felder, die bisweilen abgeschirmt werden müssen, um benachbarte Elektronikbauteile oder die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz QuApps zeigt Status Quo der Quantentechnologie

02.07.2020 | Veranstaltungen

Virtuelles Meeting mit dem BMBF: Medizintechnik trifft IT auf der DMEA sparks 2020

17.06.2020 | Veranstaltungen

Digital auf allen Kanälen: Lernplattformen, Learning Design, Künstliche Intelligenz in der betrieblichen Weiterbildung, Chatbots im B2B

17.06.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Genduplikation und Krankheiten: Die Kehrseite von Spezialisierung

06.07.2020 | Biowissenschaften Chemie

Darmbakterien verbessern Prognose von Typ-2-Diabetes

06.07.2020 | Biowissenschaften Chemie

Lichtorgel im Ohr: Erstmals Einsatz von vielkanaligen Cochlea-Implantaten mit Mikro-Leuchtdioden

06.07.2020 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics