Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

ETH-Forschende machen Proteine in der Oberfläche eines Zellkerns sichtbar

15.01.2003


Der Zellkern, in welchem die genetische Information sitzt, kommuniziert mit dem Rest der Zelle durch so genannte Kernporen. Wie ändern diese Kernporen ihre Struktur, wenn speziell präparierte Moleküle andocken? Warum bleiben einige Moleküle regelrecht in der Pore stecken, während andere elegant hindurchgleiten? Die Januar-Ausgabe des Wissenschaftsmagazins "Biophysical Journal" berichtet von dieser Forschungsarbeit, für die Wissenschaftler aus den Disziplinen Biologie und Physik ihre Kräfte gebündelt haben.



Im Zellkern ist nicht nur die genetische Information der einzelnen Zelle, sondern auch des gesamten Organismus gespeichert. Jede Zelle eines mehrzelligen Lebewesens, z.B. des Menschen, verfügt über den gleichen DNA-Satz. Die Kommunikation des Zellkerns mit dem Rest der Zelle und umgekehrt entscheidet darüber, dass die Zellen richtig funktionieren und somit das Überleben des Organismus garantieren. Der Kernporenkomplex stellt den einzigen Weg für die makromolekulare Kommunikation zwischen Zellkern und dem Rest der Zelle dar.



Strukturelle Eigenschaften korrelieren mit funktionellen Eigenschaften

Forschende der ETH-Institute für Festkörperphysik und für Biochemie haben die Struktur des Kernporenkomplexes genauer untersucht und dabei die Frage geklärt, ob sich die Struktur durch das Binden von Molekülen ändert. Bei diesen Molekülen handelt es sich einerseits um so genannte Transportrezeptoren, von denen man weiss, dass sie den Transport in den Zellkern vermitteln, und anderseits um Alkohole. Aus früheren biochemischen Untersuchungen war bereits bekannt, dass die Transportkapazitäten des Porenkomplexes durch das Binden dieser Moleküle verändert wird. Die Untersuchungen zeigten nun tatsächlich, dass sich auch die Struktur der Porenkomplexe ändert, d.h. Änderungen in der Transportkapazität in und aus dem Kern korrelieren mit Änderungen in der Struktur des Kernporenkomplexes.

Brücke von der Physik in die Biologie

Für die Untersuchungen verwendeten die Forschenden die so genannte Rasterkraftmikroskopie. Dabei tastet eine feine Spitze die Oberfläche ab und erstellt so ein Profil. Durch das Zusammensetzen aller gemessenen Profile entsteht ein dreidimensionales Bild der untersuchten Oberfläche. Biologische Strukturen unterscheiden sich aber stark von denjenigen, die üblicherweise in der Physik untersucht werden. Am Institut für Festkörperphysik der ETH Zürich wurde die Methode der Rasterkraftmikroskopie optimiert, um auch weiche biologische Oberflächen mit grosser Genauigkeit abzubilden. Die ETH-Physiker haben damit einen Weg gefunden, wie biologische Strukturen - in diesem Fall Kernporenkomplexe - in annähernd natürlichem Zustand untersucht werden können. Dazu haben sie sich mit Forschenden aus dem Institut für Biochemie zusammengeschlossen.

Beatrice Huber | idw
Weitere Informationen:
http://www.cc.ethz.ch/medieninfo
http://www.biophysj.org/cgi/content/full/84/1/665

Weitere Berichte zu: Kernporenkomplex Molekül Physik Zelle Zellkern

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics