Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

TU München gründet Bayerisches Kernresonanz-Zentrum

01.09.2000


... mehr zu:
»Molekül
An der TU München ist ein Zentrum der Kernresonanz - Spetroskopie (NMR) von Weltrang entstanden. Höhepunkt dieser Entwicklung ist die Bewilligung eines 11 Millionen Mark teuren 900 MHz - Spektrometers durch die
Deutsche Forschungsgemeinschaft. Das Gerät, das größte seiner Bauart, wird im Frühjahr 2001 in Betrieb gehen. Derzeit gibt es erst zwei dieser Höchstleistungs - Spektro- meter in den USA, die TUM erhält das erste Gerät in Deutschland. Für das Großgerät wird derzeit ein eigenes Gebäude errichtet. Daneben beteiligt sich die TU München an den Betriebskosten der Gerätekonfiguration. Um die vorhandenen Aktivitäten an der TU München zu bündeln, richtet die Hochschule zum 1. Januar 2001 das "Bayerische Kernresonanz-Zentrum an der Technischen Universität München" ein.

Die geschäftsführende Leitung wird bei Prof. Horst Kessler, Ordinarius für Organische Chemie der TUM, liegen. Prof. Kessler ist einer der renommiertesten Strukturforscher weltweit auf dem Gebiet biologischer Systeme. Das Bayerische Kernresonanz-Zentrum baut auf der methodischen Souveränität der Fakultät für Chemie auf und bezieht von Garching aus die anderen Standorte voll in die Serviceleistungen mit ein. Insbesondere am Wissenschaftszentrum Weihenstephan kommt der NMR-Spektroskopie immer größere Bedeutung zu. Darüber hinaus können weitere bayerische Universitäten sowie Forschungseinrichtungen Mitglieder des Kernresonanz-Zentrums werden.

An der Fakultät für Chemie der TU München in Garching befindet sich mit zehn Geräten der deutschlandweit bedeutendste Bestand von sogenannten Hochfeld - NMR - Spektrometern, wobei die Feldstärkendifferenzierung ein besonderes Leistungsmerkmal dieses Standortes ist. Damit verfügt Garching neben der neuen Forschungsneutronenquelle FRM-II über eine weitere Strukturaufklärungsmethode auf höchstem internationalem Niveau.

Die NMR-Spektroskopie ist die umfassendste und leistungsfähigste Methode der chemischen Strukturaufklärung, insbesondere von komplexen biologischen Systemen. Sie erlaubt in einzigartiger Weise Einblicke in die Struktur und Beweglichkeit von Biomolekülen und stellt eine der wesentlichen Voraussetzungen für die biotechnologische Entwicklung auf allen Sektoren (u.a. Medizin und Landwirtschaft) dar. Bei der NMR-Spektroskopie wird die Probe einer Substanz in ein starkes Magnetfeld gebracht und durch Einstrahlung von Radiowellen angeregt, d.h. zur Resonanz gebracht. Je höher die Leistungsfähigkeit der Spektrometer ist, umso komplexere Moleküle können untersucht werden. Die Atome der Moleküle geben charakteristische Antworten auf die Anregungen, aus denen Spezialisten die dreidimensionale Struktur und deren Beweglichkeit ablesen können. Diese Informationen sind für die Aufklärung biologischer Wirkprinzipien unbedingt notwendig.

Dieter Heinrichsen M.A. |

Weitere Berichte zu: Molekül

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zebrafische reparieren ihr Herz dank spezieller Zellen
23.10.2019 | Universität Bern

nachricht Chemikern der Universität Münster gelingt Herstellung neuartiger Lewis-Supersäuren auf Phosphor-Basis
22.10.2019 | Westfälische Wilhelms-Universität Münster

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abbau von Magnesiumlegierung auf der Nanoskala beobachtet

Erstmals konnten ETH-​Forscherinnen und Forscher die Korrosion von Magnesiumlegierungen für biomedizinische Anwendungen auf der Nanoskala beobachten. Dies ist ein wichtiger Schritt, um bessere Vorhersagen darüber zu treffen, wie schnell Implantate im Körper abgebaut werden und so massgeschneiderte Implantatwerkstoffe entwickelt werden können.

Magnesium und seine Legierungen halten vermehrt Einzug in die Medizin: einerseits als Material für Implantate in der Knochenchirurgie wie Schrauben oder...

Im Focus: Researchers watch quantum knots untie

After first reporting the existence of quantum knots, Aalto University & Amherst College researchers now report how the knots behave

A quantum gas can be tied into knots using magnetic fields. Our researchers were the first to produce these knots as part of a collaboration between Aalto...

Im Focus: Hohlraum vermittelt starke Wechselwirkung zwischen Licht und Materie

Forschern ist es gelungen, mithilfe eines mikroskopischen Hohlraumes eine effiziente quantenmechanische Licht-Materie-Schnittstelle zu schaffen. Darin wird ein einzelnes Photon bis zu zehn Mal von einem künstlichen Atom ausgesandt und wieder absorbiert. Das eröffnet neue Perspektiven für die Quantentechnologie, berichten Physiker der Universität Basel und der Ruhr-Universität Bochum in der Zeitschrift «Nature».

Die Quantenphysik beschreibt Photonen als Lichtteilchen. Will man ein einzelnes Photon mit einem einzelnen Atom interagieren lassen, stellt dies aufgrund der...

Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

Im Focus: Freiburger Forschenden gelingt die erste Synthese eines kationischen Tetraederclusters in Lösung

Hauptgruppenatome kommen oft in kleinen Clustern vor, die neutral, negativ oder positiv geladen sein können. Das bekannteste neutrale sogenannte Tetraedercluster ist der weiße Phosphor (P4), aber darüber hinaus sind weitere Tetraeder als Substanz isolierbar. Es handelt sich um Moleküle aus vier Atomen, deren räumliche Anordnung einem Tetraeder aus gleichseitigen Dreiecken entspricht. Bisher waren neben mindestens sechs neutralen Versionen wie As4 oder AsP3 eine Vielzahl von negativ geladenen Tetraedern wie In2Sb22– bekannt, jedoch keine kationischen, also positiv geladenen Varianten.

Ein Team um Prof. Dr. Ingo Krossing vom Institut für Anorganische und Analytische Chemie der Universität Freiburg ist es gelungen, diese positiv geladenen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wiegende Halme auf den Designers‘ Open

23.10.2019 | Veranstaltungen

13. Aachener Technologie- und Innovationsmanagement-Tagung – »Collaborate to Innovate: Making the Net Work«

22.10.2019 | Veranstaltungen

Serienfertigung von XXL-Produkten: Expertentreffen in Hannover

22.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Abbau von Magnesiumlegierung auf der Nanoskala beobachtet

23.10.2019 | Materialwissenschaften

Wiegende Halme auf den Designers‘ Open

23.10.2019 | Veranstaltungsnachrichten

Kosmischer Staub auf Ballonfahrt – Experiment zur Planetenentstehung

23.10.2019 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics