Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Katalyse mit Ecken und Kanten

13.08.2002


Wissenschaftler des Fritz-Haber-Instituts zeigen, wie der Verlauf chemischer Reaktionen durch die Feinstruktur mikroskopischer Katalysatorteilchen bestimmt wird


Viele chemische Reaktionen lassen sich durch Katalysatoren in die gewünschte Richtung lenken. Doch wie diese Steuerung im Detail funktioniert, ist in den meisten Fällen ungeklärt. Jetzt ist Forschern am Fritz-Haber-Institut der Max-Planck-Gesellschaft in Berlin der Nachweis gelungen, wie eine solche katalytische Kontrolle eines chemischen Prozesses auf atomarer Ebene vor sich geht (Angewandte Chemie, 15. Juli 2002). Hierzu setzten die Forscher neuartige Molekularstrahltechniken zur genauen Messung von Reaktionsgeschwindigkeiten ein. Das erstmalige mikroskopische Verständnis der Aktivität kleiner Katalysatorteilchen weist auch den Weg zur Optimierung von Katalysatoren im komplexen industriellen Einsatz.


"Abb.: Modell eines Palladium-Katalysatorteilchens auf einem Trägermaterial. Die Verteilung der Reaktionsplätze auf dem winzigen Metallkristall steuert den Verlauf der chemischen Reaktion."


"Grafik: Fritz-Haber-Institut "


Ob in der Umweltschutztechnik oder Industrie, in vielen chemischen Prozessen kommen Katalysatoren zum Einsatz. Ihr Zweck ist es, chemische Reaktionen gezielt zu lenken oder zu beschleunigen: Hierbei geht es immer darum, selektiv mehr von den gewünschten Produkten zu erzeugen und nicht gewünschte (Neben-)Produkte möglichst zu vermeiden. Vielfach bestehen die Katalysatoren aus winzigen Metallteilchen, die jeweils nur aus wenigen tausend Atomen zusammengesetzt sind und auf einem Trägermaterial fein verteilt werden. Erstaunlicherweise lässt sich über die Struktur und Eigenschaften dieser Katalysatorteilchen die Richtung und Geschwindigkeit vieler chemischer Reaktionen bestimmen. Wie diese Steuerung aber genau geschieht, ist bislang weitestgehend ein Rätsel.

Wissenschaftler um Dr. Jörg Libuda und Prof. Hans-Joachim Freund am Fritz-Haber-Institut in Berlin haben diese Problematik anhand einer einfachen chemischen Reaktion untersucht, das heißt an verschiedenen Umsetzungen des Alkohols Methanol, der als industrieller Grundstoff von großer Bedeutung ist. Hierzu setzten die Forscher so genannte Modellkatalysatoren ein, die einerseits eine wohldefinierte Struktur aufweisen, andererseits aber das Potential haben, die Komplexität realer Katalysatoren in gezielter und kontrollierter Weise zu modellieren. Diese reaktiven Metallteilchen bestanden aus winzigen Palladiumkristallen, wie sie auch in vielen kommerziell genutzten Katalysatorsystemen verwendet werden. Die Oberfläche dieser nur wenige Millionstel Millimeter großen Kristalle besteht aus vielen sehr unterschiedlich strukturierten Stellen, wie zum Beispiel Kanten, Ecken oder glatten Kristallflächen.

Bisher wurde vermutet, dass an den verschiedenen Reaktionsplätzen der Katalysatorteilchen auch jeweils nur ganz bestimmte chemische Reaktionen ablaufen. Um an den unterschiedlichen Stellen in ihrem Modellsystem die Geschwindigkeit der chemischen Vorgänge genau messen zu können, verwendeten die Berliner Forscher mehrere so genannte Molekularstrahlen. In diesen Strahlen bewegen sich Moleküle gemeinsam in eine genau bestimmte Richtung, so dass ihr Auftreffen auf dem Katalysator präzise kontrolliert werden kann.

Bei ihren Experimenten konnten die Wissenschaftler auf dem Katalysator zwei verschiedene Reaktionswege des Methanols beobachten: Entweder wurde innerhalb des Methan-Moleküls eine chemische Bindung zwischen Kohlenstoff- und Wasserstoffatomen gebrochen oder es wurde die Kohlenstoff-Sauerstoff-Bindung getrennt. Damit konnten die Forscher direkt nachweisen, dass der zweite Reaktionsweg, also die Aufspaltung der C-O-Bindung, gerade durch die Kanten der Katalysatorteilchen besonders beschleunigt wurde. Dr. Jörg Libuda, Arbeitsgruppenleiter am Fritz-Haber-Institut, stellte dazu fest: "Uns ist es erstmals gelungen, eine solche Katalyse an kleinen Metallteilchen von bisher rein empirisch gestützten Vorstellungen auf fundierte, mikroskopische Füße zu stellen. Mit diesem atomaren Verständnis des katalytischen Mechanismus liefern wir auch grundsätzlichen Input für die Industrie - was braucht man im Detail, um Katalysator-Systeme zu verstehen und letztlich noch genauer steuern zu können."

Originalveröffentlichung der Arbeit: S. Schauermann, J. Hoffmann, V. Johánek, J. Hartmann, J. Libuda, H.-J. Freund: ’Katalytische Aktivität und Vergiftung spezifischer aktiver Zentren von Metall-Nanopartikeln auf Trägern’, Angewandte Chemie, Vol. 114, No. 14, July 15, 2002, p. 2532-35

S. Schauermann, J. Hoffmann, V. Johanék, J. Hartmann, J. Libuda, H.-J. Freund:’Catalytic Activity and Poisoning of Specific Sites on Supported Metal Nanoparticles’ Angewandte Chemie International Edition, Vol. 41, No. 14, July 15, 2002, p. 2643-46

Weitere Informationen erhalten Sie von:

Dr. Jörg Libuda
Fritz-Haber-Institut der Max-Planck-Gesellschaft
Faradayweg 4-6
14195 Berlin
Tel.: (0 30) 84 13 - 41 39
Fax: (0 30) 84 13 - 43 09
E-Mail: libuda@fhi-berlin.mpg.de

Dr. Bernd Wirsing | Presseinformation

Weitere Berichte zu: Fritz-Haber-Institut Kante Katalysator Katalysatorteilchen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forschende entschlüsseln das Alter feiner Baumwurzeln
17.08.2018 | Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft WSL

nachricht Erster Transkript-Atlas sämtlicher Weizengene erweitert die Perspektiven für Forschung und Züchtung
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: Neue interaktive Software: Maschinelles Lernen macht Autodesigns aerodynamischer

Neue Software verwendet erstmals maschinelles Lernen um Strömungsfelder um interaktiv designbare 3D-Objekte zu berechnen. Methode wird auf der renommierten SIGGRAPH-Konferenz vorgestellt

Wollen Ingenieure oder Designer die aerodynamischen Eigenschaften eines neu gestalteten Autos, eines Flugzeugs oder anderer Objekte testen, lassen sie den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

Das Architekturmodell in Zeiten der Digitalen Transformation

14.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

In Form bleiben

17.08.2018 | Biowissenschaften Chemie

Weizen hat ein fünfmal umfangreicheres Erbgut als der Mensch

17.08.2018 | Biowissenschaften Chemie

Wenn Schwefel spurlos verschwindet

17.08.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics