Photochemische Prozesse gezielt unterdrückt – Wie Pflanzen sich vor Sonnenbrand schützen

Der molekulare Mechanismus dieses fundamentalen Prozesses ist noch weitgehend unbekannt. Einen Teil des Rätsels jedoch konnte der theoretische Chemiker Privatdozent Andreas Dreuw von der Goethe-Universität lösen: Er sagte einen Mechanismus vorher, der es Pflanzen ermöglicht, die gewöhnlich stattfindende Umwandlung des Lichts in chemische Energie zu unterdrücken und die Extradosis Sonnenstrahlung stattdessen direkt in Wärme umzuwandeln.

„Als ich das vorschlug, hat mir keiner geglaubt“, erinnert sich der Theoretiker, der für seine Habilitationsschrift unlängst den mit 5.000 Euro dotierten Willkomm-Preis erhielt. Tatsächlich wurden seine Vorhersagen zwei Jahre später experimentell bestätigt.

Pflanzen fangen die Sonnenenergie mit lichtsammelnden Antennenkomplexen ein, die aus mehreren hundert Pigment-Molekülen bestehen: das sind zwei Sorten Chlorophyll und verschiedene Carotinoide, die beispielsweise als Farbstoff der Karotte bekannt sind. Die Lichtenergie regt Elektronen in den Pigmenten an, und ein ausgefeilter Transportmechanismus zwischen zwei Photosystemen sorgt dafür, dass die Elektronen bei ihrer Rückkehr in den Grundzustand chemische Energie erzeugen. Bei starker Sonneneinstrahlung würde die Pflanze sich allerdings selbst zerstören, wenn sie alles Licht auf diese Weise umwandelte. Verhindert wird dies durch einen nicht-photochemischen Quenching-Prozess (von engl. „to quench“, dämpfen, löschen) dessen molekularer Mechanismus gegenwärtig ein heißes Thema in der Photosyntheseforschung ist.

Um herauszufinden, wie dieser Prozess auf molekularer Ebene abläuft, arbeitet der theoretische Chemiker eng mit Experimentatoren an der Universität Frankfurt und dem benachbarten Max-Planck-Institut für Biophysik zusammen. „Aus den Pflanzen, die wir bisher untersucht haben, könnte man mittlerweile einen großen Salat machen“, meint Dreuw, „Wir hatten Gurke, Spinat und Erbsen.“ Zunächst werden aus den Blättern die Proteine der lichtsammelnden Komplexe extrahiert. Dann versucht man mit ultrakurzen Laserpulsen die gesuchten elektronischen Übergänge gezielt anzuregen. Dreuws Aufgabe ist es, die theoretischen Annahmen, die solchen Experimenten zugrunde liegen, durch Simulationen zu überprüfen. „Gegenwärtig gehen wir davon aus, dass sich ein Quenching-Komplex aus Carotinoiden und Chlorophyll bildet, dessen elektronische Struktur so beschaffen ist, dass photochemische Prozesse nicht möglich sind“, erklärt er.

Die enge Zusammenarbeit mit Experimentatoren ist Dreuw wichtig. Wenn seine Doktoranden und Diplomanden mit ihm wissenschaftliche Probleme diskutieren wollen, müssen sie nicht nur geistig, sondern auch körperlich fit sein: jeden Mittag zieht Dreuw die Laufschuhe an und dreht seine 10-Kilometer lange Runde vom Frankfurter Riedberg über Bonames, Kalbach, den alten Flughafen und läuft an der Nidda entlang zurück. Danach ist er wieder fit für die zweite Tageshälfte.

Informationen:
PD Andreas Dreuw, Tel.: 069/798-29441, andreas@theochem.uni-frankfurt.de, Theoretische Chemie komplexer Systeme, Campus Riedberg, Universität Frankfurt.
Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt am Main. Vor 94 Jahren von Frankfurter Bürgern gegründet, ist sie heute eine der zehn größten Universitäten Deutschlands. Am

1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Rund um das historische Poelzig-Ensemble im Frankfurter Westend entsteht derzeit für rund 600 Millionen Euro der schönste Campus Deutschlands. Mit 45 eingeworbenen Stiftungs- und Stiftungsgastprofessuren nimmt die Goethe-Uni den deutschen Spitzenplatz ein. In drei Forschungsrankings des CHE in Folge und in der Exzellenzinitiative zeigt sich die Goethe-Universität als eine der forschungsstärksten Hochschulen Deutschlands.

Herausgeber: Der Präsident
Abteilung Marketing und Kommunikation, Postfach 11 19 32,
60054 Frankfurt am Main
Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation
Telefon (069) 798 – 2 92 28, Telefax (069) 798 – 2 85 30,
E-Mail hardy@pvw.uni-frankfurt.de

Media Contact

Dr. Anne Hardy idw

Weitere Informationen:

http://www.uni-frankfurt.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer