Ein Nanosensor misst den Zuckergehalt in der lebenden Zelle

Tübinger Forscher berichten über Prototyp einer neuen Messmethode im Fachmagazin PNAS

Um in der Forschung neue Erkenntnisse zu gewinnen, war schon häufig die wichtigste Voraussetzung die Erfindung neuer Methoden zum Erfassen, Messen oder Beobachten. Die Pflanzenphysiologen Marcus Fehr und Dr. Sylvie Lalonde haben es sich unter der Leitung von Prof. Wolf Frommer vom Zentrum für Molekularbiologie der Pflanzen der Universität Tübingen zur Aufgabe gemacht, ein Instrument zu entwickeln, mit dem sie die Stoffwechselvorgänge in lebenden Zellen besser untersuchen können. Ihre Forschungsergebnisse sind nun auch in dem Fachmagazin Proceedings of the National Academy of Sciences (PNAS) in einer Online-Version erschienen (siehe unten).

So winzig eine einzelne Zelle ist, laufen darin gleichzeitig zahlreiche unterschiedliche Stoffwechselvorgänge ab: Die Zelle muss aus geeigneten Stoffen Energie gewinnen, um wiederum andere Stoffe transportieren, auf- oder abbauen zu können. Die Zelle muss für diese vielen, zum Teil parallel ablaufenden Vorgänge in verschiedene Abteile aufgeteilt sein – Kompartimente, wie die Biologen sagen. Denn manche Reaktionen müssen zum Beispiel in einer sauren Umgebung ablaufen oder andere benötigen Enzyme zur Unterstützung, die nur bei einer bestimmten Konzentration an Calcium arbeiten. Um zu erkunden, was genau in den Zellen passiert, welche Stoffe entstehen und wohin sie transportiert werden, mussten die Forscher bisher häufig die Zellstruktur zerstören oder die Zellen fixieren. Dabei sterben die Zellen ab und es lässt sich manchmal nicht feststellen, ob bestimmte Effekte vielleicht erst bei der Zerstörung der Zelle entstanden sind. Frommer und seine Mitarbeiter haben daher einen Sensor entwickelt, mit dem sie sozusagen in die lebende Zelle hineinsehen können. Das macht es sogar möglich, Unterschiede zwischen benachbarten Zellen im gleichen Gewebe zu messen, ohne das ganze System zu beeinflussen. Der Prototyp dieses Sensors kann die Konzentration des Zuckers Maltose messen. Maltose ist ein Abbauprodukt der Stärke, die vielen Bakterien, Pilzen und Tieren als Nahrung dient. Auch Pflanzen bauen zur Energiegewinnung nachts Stärke zu Maltose ab, da sie im Dunkeln die Sonnenenergie nicht direkt nutzen können.

Wie funktioniert nun ein Sensor für Maltose? Zunächst benötigten die Forscher Moleküle, die sich spezifisch nur an diesen einen Stoff binden. Denn sonst würden sie zusammen mit der Maltose zum Beispiel auch andere Zucker messen. Sie bedienten sich eines bestimmten Maltose-Bindungsproteins aus Bakterien (periplasmic binding proteins, PBPs), das diese Bedingungen erfüllt. Über genetische Veränderungen haben die Forscher ein PB-Protein hergestellt, das für den richtigen Messbereich der Maltose-Konzentrationen geeignet ist. Weitere Bedingung für das Funktionieren des Sensors ist, dass das Protein bei der Bindung des spezifischen Stoffes seine Form ändert, um die Bindung zuverlässig anzuzeigen. Das Maltose-PBP aus Bakterien klappt bei der Bindung der Maltose durch eine scharnierartige Bewegung zusammen – ähnlich wie die Fangorgane der fleischfressenden Pflanze Venusfliegenfalle beim Fangen eines Insekts. Dabei werden zwei fluoreszierende Proteine näher zusammengebracht, von denen eines durch blaues Licht angeregt wurde. Das zweite fluoreszierende Protein übernimmt die Resonanzenergie des ersten und leuchtet in einer anderen Farbe. Das Licht kann gemessen werden und liefert so indirekt Informationen über die Konzentration an Maltose in der Zelle. Änderungen der Maltose-Konzentration in der Zelle können die Forscher sogar dynamisch in vier Dimensionen verfolgen: durch eine dreidimensionale Darstellung der fluoreszierenden Moleküle in einem speziellen Mikroskop und über die Dimension des Zeitverlaufs. Es können in Lösungen und in lebenden Zellen sehr schnell auch winzige Konzentrationsänderungen im Nanobereich festgestellt werden.

Der neue Nanosensor für Maltose ist ein Prototyp, da sich nach dem gleichen Bauprinzip auch Sensoren für andere Stoffe konstruieren lassen – wenn es ein Molekül gibt, das ganz spezifisch einen bestimmten Stoff bindet. Für mindestens 50 weitere Stoffe sind solche Moleküle, PBPs aus Bakterien, bekannt. Nach Ansicht der Forscher lassen sich damit zahlreiche weitere Stoffwechselprodukte messen wie andere Zuckersorten, Aminosäuren oder die Botenstoffe zwischen Nervenzellen. Bei Pflanzen wollen die Wissenschaftler die Verteilung verschiedener Zuckersorten in den unterschiedlichen Kompartimenten der Zelle feststellen und den Zuckertransport in den Leitgeweben von Pflanzen genauer untersuchen. Die Messmethode ist nicht auf pflanzliche Zellen beschränkt. Denn auf der Ebene der Zellen lässt sie sich problemlos auf andere Lebewesen übertragen. Die Forscher wollen das Verfahren zum Beispiel auch zur Messung der Zuckerkonzentration in menschlichen Zellen weiterentwickeln, was in der medizinischen Anwendung vor allem bei Diabetes interessant ist.

Nähere Informationen:

Prof. Wolf Frommer
Zentrum für Molekularbiologie der Pflanzen
Auf der Morgenstelle 1
72076 Tübingen
Tel. 0 70 71/2 97 26 05
Fax 0 70 71/29 32 87
E-Mail: frommer@zmbp.uni-tuebingen.de

Media Contact

Michael Seifert idw

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ideen für die Zukunft

TU Berlin präsentiert sich vom 22. bis 26. April 2024 mit neun Projekten auf der Hannover Messe 2024. Die HANNOVER MESSE gilt als die Weltleitmesse der Industrie. Ihr diesjähriger Schwerpunkt…

Peptide auf interstellarem Eis

Dass einfache Peptide auf kosmischen Staubkörnern entstehen können, wurde vom Forschungsteam um Dr. Serge Krasnokutski vom Astrophysikalischen Labor des Max-Planck-Instituts für Astronomie an der Universität Jena bereits gezeigt. Bisher ging…

Wasserstoff-Produktion in der heimischen Garage

Forschungsteam der Frankfurt UAS entwickelt Prototyp für Privathaushalte: Förderzusage vom Land Hessen für 2. Projektphase. Wasserstoff als Energieträger der Zukunft ist nicht frei verfügbar, sondern muss aufwendig hergestellt werden. Das…

Partner & Förderer