Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Nanosensor misst den Zuckergehalt in der lebenden Zelle

09.07.2002


Tübinger Forscher berichten über Prototyp einer neuen Messmethode im Fachmagazin PNAS

... mehr zu:
»Bakterium »Molekül »Sensor »Zelle

Um in der Forschung neue Erkenntnisse zu gewinnen, war schon häufig die wichtigste Voraussetzung die Erfindung neuer Methoden zum Erfassen, Messen oder Beobachten. Die Pflanzenphysiologen Marcus Fehr und Dr. Sylvie Lalonde haben es sich unter der Leitung von Prof. Wolf Frommer vom Zentrum für Molekularbiologie der Pflanzen der Universität Tübingen zur Aufgabe gemacht, ein Instrument zu entwickeln, mit dem sie die Stoffwechselvorgänge in lebenden Zellen besser untersuchen können. Ihre Forschungsergebnisse sind nun auch in dem Fachmagazin Proceedings of the National Academy of Sciences (PNAS) in einer Online-Version erschienen (siehe unten).

So winzig eine einzelne Zelle ist, laufen darin gleichzeitig zahlreiche unterschiedliche Stoffwechselvorgänge ab: Die Zelle muss aus geeigneten Stoffen Energie gewinnen, um wiederum andere Stoffe transportieren, auf- oder abbauen zu können. Die Zelle muss für diese vielen, zum Teil parallel ablaufenden Vorgänge in verschiedene Abteile aufgeteilt sein - Kompartimente, wie die Biologen sagen. Denn manche Reaktionen müssen zum Beispiel in einer sauren Umgebung ablaufen oder andere benötigen Enzyme zur Unterstützung, die nur bei einer bestimmten Konzentration an Calcium arbeiten. Um zu erkunden, was genau in den Zellen passiert, welche Stoffe entstehen und wohin sie transportiert werden, mussten die Forscher bisher häufig die Zellstruktur zerstören oder die Zellen fixieren. Dabei sterben die Zellen ab und es lässt sich manchmal nicht feststellen, ob bestimmte Effekte vielleicht erst bei der Zerstörung der Zelle entstanden sind. Frommer und seine Mitarbeiter haben daher einen Sensor entwickelt, mit dem sie sozusagen in die lebende Zelle hineinsehen können. Das macht es sogar möglich, Unterschiede zwischen benachbarten Zellen im gleichen Gewebe zu messen, ohne das ganze System zu beeinflussen. Der Prototyp dieses Sensors kann die Konzentration des Zuckers Maltose messen. Maltose ist ein Abbauprodukt der Stärke, die vielen Bakterien, Pilzen und Tieren als Nahrung dient. Auch Pflanzen bauen zur Energiegewinnung nachts Stärke zu Maltose ab, da sie im Dunkeln die Sonnenenergie nicht direkt nutzen können.


Wie funktioniert nun ein Sensor für Maltose? Zunächst benötigten die Forscher Moleküle, die sich spezifisch nur an diesen einen Stoff binden. Denn sonst würden sie zusammen mit der Maltose zum Beispiel auch andere Zucker messen. Sie bedienten sich eines bestimmten Maltose-Bindungsproteins aus Bakterien (periplasmic binding proteins, PBPs), das diese Bedingungen erfüllt. Über genetische Veränderungen haben die Forscher ein PB-Protein hergestellt, das für den richtigen Messbereich der Maltose-Konzentrationen geeignet ist. Weitere Bedingung für das Funktionieren des Sensors ist, dass das Protein bei der Bindung des spezifischen Stoffes seine Form ändert, um die Bindung zuverlässig anzuzeigen. Das Maltose-PBP aus Bakterien klappt bei der Bindung der Maltose durch eine scharnierartige Bewegung zusammen - ähnlich wie die Fangorgane der fleischfressenden Pflanze Venusfliegenfalle beim Fangen eines Insekts. Dabei werden zwei fluoreszierende Proteine näher zusammengebracht, von denen eines durch blaues Licht angeregt wurde. Das zweite fluoreszierende Protein übernimmt die Resonanzenergie des ersten und leuchtet in einer anderen Farbe. Das Licht kann gemessen werden und liefert so indirekt Informationen über die Konzentration an Maltose in der Zelle. Änderungen der Maltose-Konzentration in der Zelle können die Forscher sogar dynamisch in vier Dimensionen verfolgen: durch eine dreidimensionale Darstellung der fluoreszierenden Moleküle in einem speziellen Mikroskop und über die Dimension des Zeitverlaufs. Es können in Lösungen und in lebenden Zellen sehr schnell auch winzige Konzentrationsänderungen im Nanobereich festgestellt werden.

Der neue Nanosensor für Maltose ist ein Prototyp, da sich nach dem gleichen Bauprinzip auch Sensoren für andere Stoffe konstruieren lassen - wenn es ein Molekül gibt, das ganz spezifisch einen bestimmten Stoff bindet. Für mindestens 50 weitere Stoffe sind solche Moleküle, PBPs aus Bakterien, bekannt. Nach Ansicht der Forscher lassen sich damit zahlreiche weitere Stoffwechselprodukte messen wie andere Zuckersorten, Aminosäuren oder die Botenstoffe zwischen Nervenzellen. Bei Pflanzen wollen die Wissenschaftler die Verteilung verschiedener Zuckersorten in den unterschiedlichen Kompartimenten der Zelle feststellen und den Zuckertransport in den Leitgeweben von Pflanzen genauer untersuchen. Die Messmethode ist nicht auf pflanzliche Zellen beschränkt. Denn auf der Ebene der Zellen lässt sie sich problemlos auf andere Lebewesen übertragen. Die Forscher wollen das Verfahren zum Beispiel auch zur Messung der Zuckerkonzentration in menschlichen Zellen weiterentwickeln, was in der medizinischen Anwendung vor allem bei Diabetes interessant ist.


Nähere Informationen:

Prof. Wolf Frommer
Zentrum für Molekularbiologie der Pflanzen
Auf der Morgenstelle 1
72076 Tübingen
Tel. 0 70 71/2 97 26 05
Fax 0 70 71/29 32 87
E-Mail: frommer@zmbp.uni-tuebingen.de

Michael Seifert | idw
Weitere Informationen:
http://www.pnas.org/cgi/doi/10.1073/pnas.142089199

Weitere Berichte zu: Bakterium Molekül Sensor Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Darmbakterien das Herzinfarktrisiko beeinflussen
10.12.2018 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

nachricht Neues über ein Pflanzenhormon
07.12.2018 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Methode verpasst Mikroskop einen Auflösungsschub

Verspiegelte Objektträger ermöglichen jetzt deutlich schärfere Bilder / 20fach bessere Auflösung als ein gewöhnliches Lichtmikroskop - Zwei Forschungsteams der Universität Würzburg haben dem Hochleistungs-Lichtmikroskop einen Auflösungsschub verpasst. Dazu bedampften sie den Glasträger, auf dem das beobachtete Objekt liegt, mit maßgeschneiderten biokompatiblen Nanoschichten, die einen „Spiegeleffekt“ bewirken. Mit dieser einfachen Methode konnten sie die Bildauflösung signifikant erhöhen und einzelne Molekülkomplexe auflösen, die sich mit einem normalen Lichtmikroskop nicht abbilden lassen. Die Studie wurde in der NATURE Zeitschrift „Light: Science and Applications“ veröffentlicht.

Die Schärfe von Lichtmikroskopen ist aus physikalischen Gründen begrenzt: Strukturen, die näher beieinander liegen als 0,2 tausendstel Millimeter, verschwimmen...

Im Focus: Supercomputer ohne Abwärme

Konstanzer Physiker eröffnen die Möglichkeit, Supraleiter zur Informationsübertragung einzusetzen

Konventionell betrachtet sind Magnetismus und der widerstandsfreie Fluss elektrischen Stroms („Supraleitung“) konkurrierende Phänomene, die nicht zusammen in...

Im Focus: Drei Nervenzellen reichen, um eine Fliege zu steuern

Uns wirft so schnell nichts um. Eine Fruchtfliege kann dagegen schon ein kleiner Windstoß vom Kurs abbringen. Drei große Nervenzellen in jeder Hälfte des Fliegenhirns reichen jedoch aus, um die Fliege mit Hilfe visueller Signale wieder auf Kurs zu bringen.

Bewegen wir uns vorwärts, zieht die Umwelt in die entgegengesetzte Richtung an unseren Augen vorbei. Drehen wir uns, verschiebt sich das Bild der Umwelt im...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Drei Komponenten auf einem Chip

Wissenschaftlern der Universität Stuttgart und des Karlsruher Institutes für Technologie (KIT gelingt wichtige Weiterentwicklung auf dem Weg zum Quantencomputer

Quantencomputer sollen bestimmte Rechenprobleme einmal sehr viel schneller lösen können als ein klassischer Computer. Einer der vielversprechendsten Ansätze...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Eine Norm für die Reinheitsbestimmung aller Medizinprodukte

10.12.2018 | Veranstaltungen

Fachforum über intelligente Datenanalyse

10.12.2018 | Veranstaltungen

Plastics Economy Investor Forum: Treffpunkt für Innovationen

10.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Klein und vielseitig: Schlüsselorganismen im marinen Stickstoffkreislauf nutzen Cyanat und Harnstoff

10.12.2018 | Studien Analysen

Ungesundes Sitzen vermeiden: Stuhl erkennt Sitzposition und motiviert zur Änderung der Körperhaltung

10.12.2018 | Energie und Elektrotechnik

Eine Norm für die Reinheitsbestimmung aller Medizinprodukte

10.12.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics