Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein kleiner Molekül-Käfig fängt und verwertet den Eiweiß-Müll außerhalb der Zelle

29.05.2008
Ein Team von Forschern aus Wien, Martinsried, Cardiff und Duisburg-Essen hat jetzt eine Protease Funktion untersucht, welches in der Zellhülle von Bakterien, eine wesentliche Rolle bei der Entsorgung von defekten Proteinen spielt (aktuelle Publikation in PNAS, 27. Mai 2008)

Defekte und überzählige Proteine in und außerhalb von Zellen können extrem gefährlich für den Organismus sein. Da Proteine, die Ihre Funktionstüchtigkeit verloren haben, dazu neigen mit anderen Eiweißmolekülen zu großen Aggregaten zu verklumpen, können sie die lebenswichtigen Zellfunktionen erheblich stören.

In den verschiedenen Bereichen der Zelle und auch außerhalb der Zelle gibt es deshalb spezielle Enzyme, die den Eiweißschrott erkennen und unschädlich machen: die sogenannten Proteasen. Sowohl bei den kleinsten einzelligen Organismen wie beispielsweise Bakterien als auch beim Menschen gibt es eine ganze Gruppe von diesen Müll-Entsorgungs Molekülen.

Ist die Funktion von Proteasen lahmgelegt, so kann dies zu schwerwiegenden Erkrankungen wie Parkinson oder Alzheimer führen. Während die Arbeitsweise von vielen Proteasen innerhalb der Zelle gut charakterisiert ist, ist die Qualitätskontrolle von Proteinen außerhalb der Zelle noch wenig erforscht.

... mehr zu:
»Molekül »Protease »Protein »Zelle

Ein Team von Forschern aus Wien, Martinsried, Cardiff und Duisburg-Essen hat jetzt die Protease Funktion von DegP untersucht, welches in der Zellhülle von Bakterien, also außerhalb der Zelle, eine wesentliche Rolle bei der Entsorgung von defekten Proteinen spielt. "Das DegP ist ein ganz besonderes Molekül, weil es nicht nur über eine Protease-Funktion verfügt und defekte Proteine vernichtet, sondern auch intakte Proteine erkennt", so Professor Ehrmann, Mitverfasser der Studie und Vorstandsvorsitzender des Zentrums für Medizinische Biotechnologie in Duisburg-Essen. "Die gesunden Proteine werden wie in einem Käfig beschützt und sicher an ihren Bestimmungsort transportiert". Bereits 2002 hatten die Forscher die molekulare Struktur des Moleküls aufgeklärt und sowohl dessen Reparatur- als auch die Proteasefunktion beschrieben.

Auf welche Weise dieses intelligente Molekül gesunde von defekten Proteinen unterscheidet, haben die Forscher jetzt im Detail untersucht. Sie haben dabei einen neuen Mechanismus entdeckt, der wahrscheinlich auch auf menschliche Proteasen übertragbar ist, die außerhalb der Zelle arbeiten. Bei der Bindung von defekten Proteinen an dem "Eingangstor" des DegP-Käfigs verändert sich im Innern des Moleküls das Reaktionszentrum derart, dass die Protease-Aktivität in Gang gesetzt wird. Das gesamte Reaktionszentrum bleibt solange aktiv, bis das defekte Protein vollständig abgebaut ist. Dabei wird das Protein in regelmäßigen Abständen, wie mit einem Lineal vermessen, in kleine Bruchstücke zerkleinert. "Für den Organismus ist es wichtig, dass defekte Proteine so schnell wie möglich beseitigt werden", so Tim Clausen vom Institut für Molekulare Pathologie in Wien. "Wir haben beobachtet, dass, sobald der erste Schnitt in das defekte Protein gesetzt wurde, der nachfolgende Verdau sich rasant beschleunigt." Nach dem erfolgreichen Abbau verlassen die kleinen, ungefährlichen Bruchstücke den DegP-Käfig, und die Protease-Aktivität wird wieder abgeschaltet.

Die vorliegende Studie an DegP hat durchaus große Bedeutung für das Verständnis von Neuropathien. Die bakterielle Protease DegP gehört nämlich zur Proteinfamilie der sogenannten HtrA Proteasen, die beim Menschen in Verbindung mit Alzheimer und Parkinson gebracht werden. Die neuen Forschungsergebnisse können nun die Entwicklung von Therapeutika erleichtern. "DegP zeigt uns ganz neue Strategien, die Proteasemaschinen mit kleinen gezielt synthetisierten Molekülen zu aktivieren und diese schrecklichen Krankheiten zu mildern'' meint Nobelpreisträger Robert Huber, der am Max-Planck-Institut für Biochemie in Martinsried und ZMB der Universität Duisburg-Essen forscht.

Originalpublikation:
Tobias Krojer, Karen Pangerl, Juliane Kurt, Justyna Sawa, Christoph Stingl, Karl Mechtler, Robert Huber, and Michael Ehrmann, and Tim Clausen
Interplay of PDZ and protease domain of DegP ensures efficient elimination of misfolded proteins. Proc. Natl. Acad. Sci. USA, 10.1073/pnas.0803392105

http://www.pnas.org/cgi/content/abstract/0803392105v1

Weitere Informationen erhalten Sie von:
Dr. Tim Clausen
Research Institute of Molecular Pathology
Dr. Bohrgasse 7
A-1030 Wien, Österreich;
clausen@imp.univie.ac.at
Prof. Dr. Michael Ehrmann
Zentrum für Medizinische Biotechnologie
Universität Duisburg-Essen
Universitätstr. 2
45141 Essen
Michael.Ehrmann@uni-due.de
Prof. Dr. Robert Huber
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
huber@biochem.mpg.de
Dr. Lydia Didt-Koziel
Zentrum für Medizinische Biotechnologie
Universität Duisburg-Essen
Universitätstr. 2
45141 Essen
zmb@uni-due.de

Dr. Lydia Didt-Koziel | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.pnas.org/cgi/content/abstract/0803392105v1
http://www.mpg.de/bilderBerichteDokumente/dokumentation/pressemitteilungen/2002/pri0222.htm

Weitere Berichte zu: Molekül Protease Protein Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Was Vogelgrippe in menschlichen Zellen behindert
10.12.2019 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Pflanzliche Reaktion bei Hitze: Der Kopf steckt im Boden
10.12.2019 | Technische Universität Braunschweig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Graphen-Nanostrukturen magnetisch werden

Graphen, eine zweidimensionale Struktur aus Kohlenstoff, ist ein Material mit hervorragenden mechanischen, elektronischen und optischen Eigenschaften. Doch für magnetische Anwendungen schien es bislang nicht nutzbar. Forschern der Empa ist es gemeinsam mit internationalen Partnern nun gelungen, ein in den 1970er Jahren vorhergesagtes Molekül zu synthetisieren, welches beweist, dass Graphen-Nanostrukturen in ganz bestimmten Formen magnetische Eigenschaften aufweisen, die künftige spintronische Anwendungen erlauben könnten. Die Ergebnisse sind eben im renommierten Fachmagazin Nature Nanotechnology erschienen.

Graphen-Nanostrukturen (auch Nanographene genannt) können, je nach Form und Ausrichtung der Ränder, ganz unterschiedliche Eigenschaften besitzen - zum Beispiel...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Geminiden - Die Wünsch-dir-was-Sternschnuppen vor Weihnachten

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde (VdS) und des Hauses der Astronomie in Heidelberg - Die Geminiden, die Mitte Dezember zu sehen sind, sind der "zuverlässigste" der großen Sternschnuppen-Ströme mit bis zu 120 Sternschnuppen pro Stunde. Leider stört in diesem Jahr der Mond zur besten Beobachtungszeit.

Sie wurden nach dem Sternbild Zwillinge benannt: Die „Geminiden“ sorgen Mitte Dezember immer für ein schönes Sternschnuppenschauspiel. In diesem Jahr sind die...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Das 136 Millionen Atom-Modell: Wissenschaftler simulieren Photosynthese

Die Umwandlung von Sonnenlicht in chemische Energie ist für das Leben unerlässlich. In einer der größten Simulationen eines Biosystems weltweit haben Wissenschaftlerinnen und Wissenschaftler diesen komplexen Prozess an einem Bestandteil eines Bakteriums nachgeahmt – am Computer, Atom um Atom. Die Arbeit, die jetzt in der renommierten Fachzeitschrift „Cell“ veröffentlicht wurde, ist ein wichtiger Schritt zum besseren Verständnis der Photosynthese in einigen biologischen Strukturen. An der internationalen Forschungskooperation unter Leitung der University of Illinois war auch ein Team der Jacobs University Bremen beteiligt.

Das Projekt geht zurück auf eine Initiative des inzwischen verstorbenen, deutsch-US-amerikanischen Physikprofessors Klaus Schulten von der University of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Analyse internationaler Finanzmärkte

10.12.2019 | Veranstaltungen

QURATOR 2020 – weltweit erste Konferenz für Kuratierungstechnologien

04.12.2019 | Veranstaltungen

Die Zukunft der Arbeit

03.12.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Analyse internationaler Finanzmärkte

10.12.2019 | Veranstaltungsnachrichten

Was Vogelgrippe in menschlichen Zellen behindert

10.12.2019 | Biowissenschaften Chemie

Schäden im Leichtbau erkennen durch Ultraschallsensoren

10.12.2019 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics