Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Blick ins "Herz" einer zellulären molekularen Maschine

23.05.2008
Wie aus der Erbsubstanz einer Zelle Proteine erzeugt werden, ist ein zentrales Thema biologischer Forschung. Eine besondere Rolle spielen dabei kleine molekulare Maschinen in der Zelle - die Spleißosomen.

Sie bringen die Bauanleitungen für die Proteine in eine "lesbare" Form, in der die Information direkt für die Proteinherstellung genutzt werden kann. Die Komplexität und hohe Dynamik der Spleißosomen machten es bisher jedoch unmöglich, ihre Funktionsweise im Detail zu untersuchen. Wissenschaftlern am MPI für biophysikalische Chemie (Göttingen) ist es nun erstmals gelungen, faszinierende Einblicke in das aktive "Herzstück" der Spleißosomen zu erhalten (Nature, 452, 17. April 2008).

In den Zellen unseres Körpers werden alle wichtigen Funktionen - Katalyse, Bewegungs- und Transportprozesse, Signalübertragung und Informationsverarbeitung - von Proteinen ausgeführt. Die Bauanleitungen dieser Proteine sind in der Erbsubstanz (Desoxyribonukleinsäure, kurz "DNA") einer jeden Zelle archiviert. Allerdings ist diese Information für die Herstellung von Proteinen nicht direkt nutzbar. Dazu müssen die Baupläne zunächst in eine Boten- Ribonukleinsäure (Boten-RNA) umkopiert werden.

In dieser Rohfassung der Boten-RNA enthalten die Bauanleitungen aber noch einigen Ballast; sie sind nicht durchgängig "lesbar". Erst wenn die dazwischen liegenden überflüssigen Abschnitte entfernt werden, können die Bauanleitungen richtig interpretiert werden. Das präzise Herausschneiden nicht benötigter Abschnitte und das Verbinden erforderlicher Teilstücke erfolgen dabei ganz ähnlich dem Trennen und Verknüpfen von Seilenden in der Seefahrt. In Analogie dazu bezeichnen Wissenschaftler den zellulären Vorgang als "Spleißen".

... mehr zu:
»Protein »Spleißosom

Das Spleißen erfolgt mit Hilfe einer komplexen makromolekularen Maschine aus über 150 Proteinen und bis zu fünf RNA-Molekülen - dem Spleißosom. Dieses muss sich für jede Runde von Schneiden und Verknüpfen auf der RNA neu zusammenbauen. Dazu werden im Zellkern aus einer Vielzahl von Einzelkomponenten zunächst eine Reihe vorgefertigter Komplexe bereitgestellt. Diese werden dann in einem hochdynamischen Prozess in wenigen Schritten zum funktionsfähigen Spleißosom zusammengesetzt. Doch sind Spleißosomen nicht nur hochdynamisch, sondern auch äußerst empfindlich. Versuche, sie ohne Verlust ihrer Aktivität aufzureinigen, blieben daher bisher erfolglos.

Wissenschaftlern vom Göttinger Max-Planck-Institut für biophysikalische Chemie unter Leitung von Prof. Reinhard Lührmann ist es nun erstmals gelungen, aktive Spleißosomen-Komplexe zu isolieren. "Spleißsomen-Komplexe direkt bei ihrer Arbeit untersuchen zu können, ermöglicht uns neue detaillierte Einblicke in den Mechanismus des Spleißens. Dabei können wir auch genau bestimmen, welche Proteine der Zelle für diesen Prozess unentbehrlich sind", erklärt Henning Urlaub, einer der am Projekt beteiligten Forschungsgruppenleiter. Mit Hilfe der stabilen Spleißosomen-Komplexe können Wissenschaftler das Spleißosom zudem auch strukturell im aktiven Zustand untersuchen. Die räumliche Struktur des Spleißosoms "in Aktion" zu kennen, sei eine wesentliche Voraussetzung, im Detail zu verstehen, wie es funktioniert, so die Wissenschaftler.

Durch unterschiedliche Verknüpfung und geschicktes Überspringen bestimmter Teilabschnitte der Bauanleitung ermöglicht das Spleißen, eine schier unendliche Vielfalt von Proteinen aus einem begrenzten Vorrat an DNA herzustellen. Für die komplexen Aufgaben, die die Zellen höher entwickelter Organismen ausführen, ist diese Proteinvielfalt unentbehrlich. Somit ist nicht verwunderlich, dass eine Vielzahl von Krankheiten - darunter viele bösartige Tumorkrankheiten und neurodegenerative Erkrankungen - auf Fehler im Spleißen der Boten-RNA zurückzuführen sind. Die Funktion und Dynamik des Spleißprozesses im molekularen Detail zu kennen, könnte daher zukünftig auch dazu beitragen, Therapien weiterzuentwickeln und neue Therapieansätze zu ermöglichen.

Kontakt:
Prof. Dr. Reinhard Lührmann,
Max-Planck-Institut für biophysikalische Chemie,
Tel.: +49 551 201-1407,
Fax: +49 551 201-1197,
E-Mail: reinhard.luehrmann@mpi-bpc.mpg.de
Dr. Henning Urlaub,
Max-Planck-Institut für biophysikalische Chemie,
Tel.: +49 551 201-1060,
Fax: +49 551 201-1197,
E-Mail: henning.urlaub@mpi-bpc.mpg.de
Dr. Carmen Rotte, Presse- und Öffentlichkeitsarbeit,
Max-Planck-Institut für biophysikalische Chemie,
Tel.: +49 551 201-1304,
Fax: +49 551 201-1151,
E-Mail: pr@mpibpc.mpg.de

Dr. Carmen Rotte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpibpc.mpg.de/groups/pr/PR/2008/08_10
http://www.mpibpc.gwdg.de/research/dep/luehrmann/index.html
http://www.mpibpc.mpg.de/groups/urlaub/

Weitere Berichte zu: Protein Spleißosom

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Auflösen von Proteinstau am Eingang von Mitochondrien
23.05.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Fossiles Zooplankton zeigt, dass marine Ökosysteme im Anthropozän angekommen sind
23.05.2019 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Geometrie eines Elektrons erstmals bestimmt

Physiker der Universität Basel können erstmals zeigen, wie ein einzelnes Elektron in einem künstlichen Atom aussieht. Mithilfe einer neu entwickelten Methode sind sie in der Lage, die Aufenthaltswahrscheinlichkeit eines Elektrons im Raum darzustellen. Dadurch lässt sich die Kontrolle von Elektronenspins verbessern, die als kleinste Informationseinheit eines zukünftigen Quantencomputers dienen könnten. Die Experimente wurden in «Physical Review Letters» und die Theorie dazu in «Physical Review B» veröffentlicht.

Der Spin eines Elektrons ist ein vielversprechender Kandidat, um als kleinste Informationseinheit (Qubit) eines Quantencomputers genutzt zu werden. Diesen Spin...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Optische Superlinsen aus Gold

Oldenburger Forscher entwickeln neues optisches Mikroskop mit extrem hoher Auflösung

Eine kegelförmige Spitze aus Gold bildet das Kernstück eines neuen, extrem leistungsfähigen optischen Mikroskops, das Oldenburger Wissenschaftler in der...

Im Focus: Impfen über die Haut – Gezielter Wirkstofftransport mit Hilfe von Nanopartikeln

Forschenden am Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Potsdam ist es gelungen Nanopartikel so weiterzuentwickeln, dass sie von speziellen Zellen der menschlichen Haut aufgenommen werden können. Diese sogenannten Langerhans Zellen koordinieren die Immunantwort und alarmieren den Körper, wenn Erreger oder Tumore im Organismus auftreten. Mit dieser neuen Technologieplattform könnten nun gezielt Wirkstoffe, zum Beispiel Impfstoffe oder Medikamente, in Langerhans Zellen eingebracht werden, um eine kontrollierte Immunantwort zu erreichen.

Die Haut ist ein besonders attraktiver Ort für die Applikation vieler Medikamente, die das Immunsystem beeinflussen. Die geeigneten Zielzellen liegen in der...

Im Focus: Chaperone halten das Tumorsuppressor-Protein p53 in Schach: Komplexer Regelkreis schützt vor Krebs

Über Leben und Tod einer Zelle entscheidet das Anti-Tumor-Protein p53: Erkennt es Schäden im Erbgut, treibt es die Zelle in den Selbstmord. Eine neue Forschungsarbeit an der Technischen Universität München (TUM) zeigt, dass diese körpereigene Krebsabwehr nur funktioniert, wenn bestimmte Proteine, die Chaperone, dies zulassen.

Eine Krebstherapie ohne Nebenwirkungen, die gezielt nur Tumorzellen angreift – noch können Ärzte und Patienten davon nur träumen. Dabei hat die Natur ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kindermediziner tagen in Leipzig

22.05.2019 | Veranstaltungen

Jubiläumskongress zur Radiologie der Zukunft

22.05.2019 | Veranstaltungen

Wissensparcour bei der time4you gestartet

22.05.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Geometrie eines Elektrons erstmals bestimmt

23.05.2019 | Physik Astronomie

Galaxien als „kosmische Kochtöpfe“

23.05.2019 | Physik Astronomie

Auflösen von Proteinstau am Eingang von Mitochondrien

23.05.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics