Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Molekül räumt auf: Neue Chancen im Kampf gegen bakterielle Infektionen

21.05.2008
Forscher am Zentrum für Medizinische Biotechnologie an der Universität Duisburg-Essen haben ein Aufräumkommando der Zelle untersucht und berichten darüber in der neuesten Ausgabe (21. Mai) des angesehenen Wissenschaftsmagazins Nature. Im Mittelpunkt steht das Molekül DegP, das defekte Proteine erkennt und in seinem Reaktionszentrum repariert oder vernichtet. Intakte Proteine werden vom Molekül wie in einen kleinen Käfig umschlossen und sicher an Ihren Zielort transportiert.

Proteine vermitteln alle lebenswichtigen Prozesse in der Zelle. Deshalb betreibt die Zelle einen erheblichen Aufwand, um ihre Eiweiße in der richtigen Form, zum richtigen Zeitpunkt und in der geforderten Menge zu produzieren.

Auch Proteine, die bereits im Einsatz sind, müssen ständig auf Ihre Funktionsfähigkeit hin überwacht werden. Defekte Proteine stellen nämlich eine tödliche Gefahr für die Zelle und den ganzen Organismus dar. Sie können beim Menschen beispielsweise zu solch komplexen Krankheitsbildern wie Parkinson, Kreutzfeld-Jacob (BSE) und Alzheimer führen. Bei der Qualitätskontrolle kennt die Zelle deshalb kein Pardon, sie überprüft genau, wie die Proteine aussehen und ob sie ihre Arbeit in der Zelle ausführen können.

Forscher am Zentrum für Medizinische Biotechnologie haben jetzt einen Faktor untersucht, der an der Durchführung der Qualitätskontrolle in Bakterien wesentlich beteiligt ist. In der jüngsten Ausgabe von Nature beschreiben die Wissenschaftler neueste Erkenntnisse über das Molekül namens DegP, das über erstaunliche Eigenschaften verfügt: es erkennt defekte Proteine und repariert oder vernichtet diese innerhalb seines Reaktionszentrums. Gleichzeitig werden intakte Proteine von diesem Molekül wie in einen kleinen Käfig umschlossen und sicher an Ihren Zielort, in diesem Fall die äußere Hülle von Bakterien, transportiert.

... mehr zu:
»Molekül »Protein »Zelle

"Es ist erstaunlich, wie diese beiden gegensätzlichen Funktionen von nur einem Molekül ausgeführt werden können", so Professor Michael Ehrmann, Mitverfasser der Studie und Vorstandsvorsitzender des Zentrums für Medizinische Biotechnologie." Bei der detaillierten Untersuchung dieses molekularen Aufräumkommandos der Zelle machten die Forschergruppen um Tim Clausen (Wien), Helen Saibil (London) und Michael Ehrmann (Duisburg-Essen) neue interessante Entdeckungen: "Das DegP-Molekül kann seine eigene Größe und Aktivität an seine Kunden, den Proteinen, anpassen", so Professor Ehrmann. Es lagern sich einfach mehrere DegP Moleküle aneinander, bis ein Ziel-Protein vollständig eingekapselt ist. Je größer der entstehende Komplex ist, desto höher ist auch dessen Wirksamkeit.

Der DegP-Apparat überprüft, ob die eingefangenen Proteine richtig gefaltet sind. Bei defekten Proteinen wird innerhalb kurzer Zeit in der Reaktionskammer des Molekülkomplexes die Verdauungsmaschinerie angeworfen und das Eiweiß in seine Bestandteile zerlegt. Bei nur leicht defekten Proteinen dient der DegP-Apparat hingegen als Reparaturwerkstatt. Intakte und reparierte Moleküle werden anschließend an ihren Zielort transportiert, wo sie ihre Aufgabe erfüllen können.

Die neuen Einblicke in die Arbeitsweise von DegP, die in atomarer Auflösung gewonnen wurden, sollen in Zukunft helfen, bakterielle Infektionen besser zu bekämpfen. Werden beispielsweise durch eine heftige Immunantwort viele Proteine in der Zellhülle des Bakteriums geschädigt, so müssen diese möglichst kurzfristig durch neue Proteine ersetzt werden. Diese erhöhte Nachfrage lässt den DegP-Betrieb des Bakteriums innerhalb von kürzester Zeit auf Hochtouren laufen.

"Durch einen hohen DegP-Betrieb sind humanpathogene Bakterien in der Lage, den Immunattacken des menschlichen Körpers immer wieder zu trotzen", so Professor Michael Ehrmann. "Wir sind gerade dabei, die Funktion dieser Müll-Entsorgungsanlage bei Bakterien durch die Entwicklung eines neuen Antibiotikums zu unterbinden. Wenn DegP nicht mehr funktioniert, können die gesundheitsgefährdenden Bakterien nicht mehr im Wirtsorganismus überleben".

Weitere Informationen: Dr. Lydia Didt-Koziel, Tel. 0201/183-3670 , -4640, Lydia.Didt-Koziel@uni-due.de

Redaktion: Beate H. Kostka, Tel. 0203/379-2430

Beate Kostka | idw
Weitere Informationen:
http://www.uni-duisburg-essen.de

Weitere Berichte zu: Molekül Protein Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Chemiker der Universitäten Rostock und Yale zeigen erstmals Dreierkette aus gleichgeladenen Ionen
15.10.2018 | Universität Rostock

nachricht Bio-Angeln für Seltene Erden: Wie Eiweiß-Bruchstücke Elektronik-Schrott recyceln
15.10.2018 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Chemiker der Universitäten Rostock und Yale zeigen erstmals Dreierkette aus gleichgeladenen Ionen

Die Forschungskooperation zwischen der Universität Yale und der Universität Rostock hat neue wissenschaftliche Ergebnisse hervorgebracht. In der renommierten Zeitschrift „Angewandte Chemie“ berichten die Wissenschaftler über eine Dreierkette aus Ionen gleicher Ladung, die durch sogenannte Wasserstoffbrücken zusammengehalten werden. Damit zeigen die Forscher zum ersten Mal eine Dreierkette aus gleichgeladenen Ionen, die sich im Grunde abstoßen.

Die erfolgreiche Zusammenarbeit zwischen den Professoren Mark Johnson, einem weltbekannten Cluster-Forscher, und Ralf Ludwig aus der Physikalischen Chemie der...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Materiezustände durch Licht verändern

Forscherinnen und Forscher der Universität Hamburg stören die kristalline Ordnung

Physikerinnen und Physikern der Universität Hamburg ist es gelungen, mithilfe von Laserpulsen die Ordnung von Quantenmaterie so zu stören, dass ein spezieller...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Neuartiger topologischer Isolator

Erstmals haben Physiker einen topologischen Isolator gebaut, in dem nicht Elektronen oder Licht fließen, sondern Teilchen aus Licht und Materie. Ihre Neuerung präsentieren sie in „Nature“.

Topologische Isolatoren sind Materialien mit sehr speziellen Eigenschaften. Sie leiten elektrischen Strom oder Lichtteilchen nur an ihrer Oberfläche oder an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

PV Days in Halle zeigen neue Chancen für die Photovoltaik

11.10.2018 | Veranstaltungen

Methan als umweltfreundlicher Kraftstoff für LKW, Busse und andere Nutzfahrzeuge

10.10.2018 | Veranstaltungen

Schlaf ist Medizin: Neue Erkenntnisse aus der Schlafforschung

08.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Chemiker der Universitäten Rostock und Yale zeigen erstmals Dreierkette aus gleichgeladenen Ionen

15.10.2018 | Biowissenschaften Chemie

Bio-Angeln für Seltene Erden: Wie Eiweiß-Bruchstücke Elektronik-Schrott recyceln

15.10.2018 | Biowissenschaften Chemie

Sauber trennen: Neuer Klebstoff für besseres Recycling

15.10.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics