Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nervenzellen beim Lernen zugeschaut

13.05.2008
Würzburger Forscher beobachten kleinste Strukturen der Synapse im lebenden Organismus

Wissenschaftler vom Rudolf-Virchow-Zentrum der Universität Würzburg haben kleinste Strukturen von Nervenzellen der Fruchtfliege, die für Lernen und Gedächtnis zuständig sind, bei der Entwicklung unter dem Mikroskop beobachtet.

Sie konnten zeigen, dass der Umbau einzelner Proteine ein grundlegender Schritt bei Lernvorgängen und der Gedächtnisbildung ist. Gemeinsam mit Kollegen der Universität Göttingen und Leipzig veröffentlichen sie ihre Ergebnisse heute online in der renommierten Fachzeitschrift Nature Neuroscience. Sie liefern damit einen wichtigen Baustein für das Verständnis dieser Prozesse.

Erst seit einigen Jahren ist bekannt, dass unser Gehirn beim Lernen stark verändert wird. Ein ganzes Netzwerk an Nervenzellen ist daran beteiligt, das stark dynamisch ist. Nervenzellen werden aus- und umgebaut, neue Verbindungen geknüpft oder bereits vorhandene effizienter gemacht. Dabei wird jede einzelne Nervenzelle, die aus vielen Strukturen besteht, umgestaltet. Diese Prozesse sind bisher nur wenig verstanden, unter anderem deswegen, weil sie mit bisherigen Mikroskoptechniken im lebenden Organismus gar nicht sichtbar waren.

Wissenschaftler um Prof. Dr. Manfred Heckmann und Prof. Dr. Stephan Sigrist konnten jetzt direkt im lebenden Organismus beobachten, wie einzelne Bestandteile der Synapsen, der Kontaktstellen zwischen Nervenzellen, verändert werden.

Die Wissenschaftler untersuchten dazu Kontaktstellen bei Larven der Fruchtfliege. An diesen Kontaktstellen werden Signale von einer Nervenzelle auf die andere weitergeleitet. Dies geschieht dadurch, dass Proteine in der nachgeschalteten Zelle von der vorgeschalteten aktiviert werden und diese die Nervenzelle dann erregen. In der nachgeschalteten Zelle markierten die Forscher ganz bestimmte Proteine, die bei Nervenzellen für das Lernen und die Gedächtnisbildung zuständig sind: Glutamat-Rezeptoren. Untersuchungen im Reagenzglas deuteten bereits darauf hin, dass Glutamat-Rezeptoren beim Lernen vermehrt gebildet werden und auch kleinste Veränderungen im Aufbau der Rezeptoren bei dem Vorgang wichtig sind. Das wollten die Forscher nun im lebenden Organismus beobachten.

Veränderungen im Aufbau der Rezeptoren konnten die Forscher im Fluoreszenzmikroskop durch verschiedenfarbige Markierungen erkennen. Der Rezeptor besitzt verschiedene Bausteine, die er individuell verändern kann. Je nach Baustein ändert sich die Intensität, mit der ein Signal weitergeleitet wird. Die Forscher verfolgten die Entwicklung der Kontaktstellen über einen Zeitraum von 24 Stunden. Währenddessen konnten sie deutliche Veränderungen im Aufbau der Glutamat-Rezeptoren sehen. Zu Beginn der Entwicklung wird ein Subtyp in den Glutamat-Rezeptor eingebaut, der Signale besonders effektiv weiterleitet, am Ende ihrer Entwicklung wird er durch einen anderen ausgetauscht, der Signale weniger effektiv leitet. Dieser Prozess wird stark reguliert.

"Das macht Sinn. Zu Beginn der Entwicklung der Nervenzelle müssen wenige Rezeptoren jeweils sehr effektiv arbeiten. Mit der Zeit bilden sich an den Kontaktstellen immer mehr dieser Rezeptoren, die dann in Summe ein gleiches Signal mit weniger Intensität erreichen können. Ist das ankommende Signal groß genug, so wird nur noch der langsame Typ eingebaut. Das wird von der Zelle selbst reguliert," so Stephan Sigrist.

Die Ergebnisse sind auf den Menschen übertragbar, da wir ähnliche Rezeptoren besitzen und liefern einen wichtigen Baustein nicht nur zum Verständnis von Lernen und Gedächtnisprozessen. Auch zu biomedizinischen Fragestellungen: Wie Signale durch Glutamat-Rezeptoren weitergeleitet werden scheint bei Epilepsie, Schizophrenie und Alzheimer eine wichtige Rolle zu spielen.

"Activity-dependent site-specific changes of glutamate receptor composition in vivo" A.Schmid, S. Hallermann, R.J. Kittel, O. Khorramshahi, A. Frölich, C. Quentin, T. Rasse, S. Mertel, M. Heckmann, S.J. Sigrist, 2008, Nature Neuroscience. Published online 11 May 2008; | doi:10.1038/nn.2122.

Gerne schicken wir Ihnen die Publikation auf Anfrage zu, Bilder können hier herunter geladen werden und unter Angabe der Quelle: (Nature Neuroscience, DOI: 10.1038/nn.2122) veröffentlicht werden.

Kontakt:
Sonja Jülich, Leiterin Öffentlichkeitsarbeit:
Tel.: 0174-2118850 (11.-12.05.08 nur telefonisch)
ab 12.05.08 wieder unter: sonja.juelich@virchow.uni-wuerzburg.de,
Tel.: 0931-20148714
Prof. Dr. Stephan Sigrist: stephan.sigrist@virchow.uni-wuerzburg.de

Sonja Jülich | idw
Weitere Informationen:
http://www.rudolf-virchow-zentrum.de

Weitere Berichte zu: Glutamat-Rezeptor Nervenzelle Organismus Protein Rezeptor

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kühlen nach Art der Pflanzen
18.04.2019 | Westfälische Hochschule

nachricht Kontaktlinsen mit Medizin und Zucker
17.04.2019 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Neues „Baustein-Konzept“ für die additive Fertigung

Volkswagenstiftung fördert Wissenschaftler aus dem IPF Dresden bei der Erkundung eines innovativen neuen Ansatzes im 3D-Druck

Im Rahmen Ihrer Initiative „Experiment! - Auf der Suche nach gewagten Forschungsideen“
fördert die VolkswagenStiftung ein Projekt, das von Herrn Dr. Julian...

Im Focus: Vergangenheit trifft Zukunft

autartec®-Haus am Fuß der F60 fertiggestellt

Der Hafen des Bergheider Sees beherbergt seinen ersten Bewohner. Das schwimmende autartec®-Haus – entstanden im Rahmen eines vom Bundesministerium für Bildung...

Im Focus: Hybrid-Neuronen-Netzwerke mit 3D-Lithografie möglich

Netzwerken aus wenigen Neuronenzellen können gezielt künstliche dreidimensionale Strukturen vorgegeben werden. Sie werden dafür elektronisch verschaltet. Dies eröffnet neue Möglichkeiten, Fehler in neuralen Netzwerken besser zu verstehen und technische Anwendungen mit lebenden Zellen gezielter zu steuern. Dies stellt ein Team aus Forschenden aus Greifswald und Hamburg in einer Publikation in der Fachzeitschrift „Advanced Biosystems“ vor.

Eine der zentralen Fragen der Lebenswissenschaften ist, die Funktionsweise des Gehirns zu verstehen. Komplexe Abläufe im Gehirn ermöglichen uns, schnell Muster...

Im Focus: Was geschieht im Körper von ALS-Patienten?

Wissenschaftler der TU Dresden finden Wege, um das Absterben von Nervenzellen zu verringern und erforschen Therapieansätze zur Behandlung von ALS

Die Amyotrophe Lateralsklerose (ALS) ist eine unheilbare Erkrankung des zentralen Nervensystems. Nicht selten verläuft ALS nach der Diagnose innerhalb...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Künstliche Intelligenz: Lernen von der Natur

17.04.2019 | Veranstaltungen

Mobilität im Umbruch – Conference on Future Automotive Technology, 7.-8. Mai 2019, Fürstenfeldbruck

17.04.2019 | Veranstaltungen

Augmented Reality und Softwareentwicklung: 33. Industrie-Tag InformationsTechnologie (IT)²

17.04.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Irdischer Schutz für außerirdisches Metall

18.04.2019 | Verfahrenstechnologie

Erster astrophysikalischer Nachweis des Heliumhydrid-Ions

18.04.2019 | Physik Astronomie

Radioteleskop LOFAR blickt tief in den Blitz

18.04.2019 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics