Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Blinder Passagier mit Potenzial - Neues Molekül und neue Enzymfunktion für das Erkennen von DNS-Brüchen in Bakterien entdeckt

25.04.2008
Die genetische Information eines jeden Organismus muss intakt bleiben, sonst drohen Krebs und andere Erkrankungen. In höheren Organismen wird das genetische Material deshalb regelmäßig überprüft, und Schäden werden gegebenenfalls repariert. Schon länger gibt es Hinweise, dass auch in Bakterien das Erbgut entsprechend kontrolliert wird.

Ein Forscherteam der Ludwig-Maximilians-Universität (LMU) München um Professor Karl-Peter Hopfner hat nun die Kristallstruktur des dafür wichtigen Proteins DisA entschlüsselt.

Wie in der aktuellen Ausgabe der Fachzeitschrift "Molecular Cell" berichtet, erlebten sie dabei eine Überraschung: Gebunden an das Protein stießen sie nämlich auf ein bislang unbekanntes Molekül. Dieses c-di-AMP wird von DisA synthetisiert. "Das ist zum einen so interessant, weil man heutzutage ja nicht mehr oft solche Primärentdeckungen eines neuen Moleküls machen kann", sagt Hopfner.

"Zum anderen ist die Synthese von c-di-AMP durch DisA eine bislang unbekannte Enzymfunktion. Neben diesen beiden unerwarteten Ergebnissen lieferte die Kristallstruktur von DisA aber auch, was wir uns ursprünglich erhofft haben. Sie ließ uns nämlich erschließen, wie DisA DNA-Schäden aufspürt."

Checkpoints heißen die Zeitpunkte im Leben einer Zelle, in denen das Erbgut auf mögliche Schäden hin überprüft wird. Dies ist für Bakterien wichtig, etwa wenn das Erbgut verdoppelt wird, um an Tochterzellen weitergegeben zu werden.

Das Protein DisA spielt dabei eine entscheidende Rolle als eine Art Sensor: So lässt sich beobachten, dass dieses Molekül bestimmte Schäden an der DNA erkennt und daran bindet. Die Kristallstruktur von DisA zeigte dann, dass acht derartige Moleküle einen Komplex binden, der wiederum an das Erbgut andocken kann. DisA hatte aber auch eine unerwartete Aktivität als Enzym. Wie die Forscher zeigen konnten, synthetisiert DisA ein bislang unbekanntes Molekül, das in der Kristallstruktur mit gebunden war. Gemäß seiner Struktur heißt das neue Molekül "zyklisches di-Adenosinmonophosphat", kurz c-di-AMP.

Dieser unerwartete Fund erfüllt möglicherweise - so die ersten Hinweise - grundlegende Funktionen in Bakterien. "Erstaunlich wäre das nicht", so Dr. Gregor Witte und Sophia Hartung, die Erstautoren der Studie. "Das c-di-AMP ist nämlich nahe verwandt mit einem bereits bekannten Signalstoff des bakteriellen Stoffwechsels namens c-di-GMP, der zur Zeit von einigen Forschergruppen intensiv untersucht wird." Dieses Molekül ist außerordentlich wichtig bei einer ganzen Reihe von Prozessen. So kontrolliert es das Timing und das Ausmaß von komplexen Vorgängen wie etwa die Photosynthese oder die Bildung von Biofilmen - also Aggregate von Mikroorganismen, die unter anderem auch zu gefährlichen Infektionen führen können. Angesichts der Vielfalt an Funktionen, die c-di-GMP erfüllt, und der Verwandtschaft der beiden Moleküle, ist denkbar, dass auch c-di-AMP an der Regulation zahlreicher wichtiger zellulärer Prozesse beteiligt ist.

Möglicherweise geht es dabei um verschiedene Aspekte der DNA-Reparatur. "Unsere Daten deuten jedenfalls an, dass niedrige c-di-AMP-Levels eher auf Schäden im Erbgut schließen lassen, während die Konzentrationen bei normaler DNA hoch sind", so Hopfner. "Auf jeden Fall scheinen beide Moleküle zusammen den Zellzyklus stoppen zu können, wenn DisA bestimmte Schäden an der DNA entdeckt, wie wir jetzt zeigen konnten. Auf jeden Fall wird es sehr spannend sein, dieses neue Signalübertragungsmolekül in der Zellteilung weiterhin - auch strukturell - zu untersuchen. DisA ist aber ebenfalls von Interesse: Schließlich macht die unerwartete Enzymfunktion der c-di-AMP-Synthese dieses Molekül zum ersten bekannten - aber wahrscheinlich nicht einzigen - Exemplar einer di-Adenylat-Zyklase, also zu einem Enzym, das die ringförmigen c-di-AMP-Moleküle herstellen kann."

Publikation:
"Structural biochemistry of a prokaryotic checkpoint protein reveals diadenylate cyclase activity regulated by DNA recombination intermediates",
Gregor Witte, Sophia Hartung, Katharina Büttner, and Karl-Peter Hopfner
Molecular Cell, 25. April 2008
Ansprechpartner:
Prof. Dr. Karl-Peter Hopfner
Genzentrum der LMU
Tel.: 089 / 2180 - 76953
E-Mail: hopfner@lmb.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de

Weitere Berichte zu: DNA DisA Enzymfunktion Erbgut Kristallstruktur Molekül

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht IMMUNOQUANT: Bessere Krebstherapien als Ziel
19.10.2018 | Julius-Maximilians-Universität Würzburg

nachricht Auf dem Weg zu maßgeschneiderten Naturstoffen
19.10.2018 | Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Auf dem Weg zu maßgeschneiderten Naturstoffen

Biotechnologen entschlüsseln Struktur und Funktion von Docking Domänen bei der Biosynthese von Peptid-Wirkstoffen

Mikroorganismen bauen Naturstoffe oft wie am Fließband zusammen. Dabei spielen bestimmte Enzyme, die nicht-ribosomalen Peptid Synthetasen (NRPS), eine...

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Natürlich intelligent

19.10.2018 | Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ultraleichte und belastbare HighEnd-Kunststoffe ermöglichen den energieeffizienten Verkehr

19.10.2018 | Materialwissenschaften

IMMUNOQUANT: Bessere Krebstherapien als Ziel

19.10.2018 | Biowissenschaften Chemie

Raum für Bildung: Physik völlig schwerelos

19.10.2018 | Bildung Wissenschaft

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics