ETH-Forscher erkennen neue Strategie von Viren

Das Vaccinia-Virus ist ein grosses komplexes Virus, das zur Familie der Pockenviren gehört. Aufgrund seiner Grösse hat das Virus ein Problem, in Zellen einzudringen und bedient sich deshalb einer besonderen Strategie. ETH-Forscher haben diese Strategie nun erkannt und sind dabei auf überraschende Erkenntnisse gestossen.

Um in eine Zelle einzudringen, nutzt das Vaccinia-Virus das zelluläre Abfallwesen aus. Stirbt eine Zelle, nehmen benachbarte Zellen die Bruchstücke auf. Die Zellen erkennen den verwertbaren Abfall an einem besonderen Molekül, das auf der Innenseite der Doppelmembran von Zellen sitzt. Sobald eine Zelle stirbt, wird die Membran nach aussen gekehrt und ist aufgrund des Moleküls als Abfall markiert.

Diese Abfallmarkierung trägt auch das Vaccinia-Virus auf seiner Oberfläche. „Die Hülle von Vaccinia-Viren ist mit diesem Stoff angereichert“, erklärt Jason Mercer, Postdoc am ETH-Institut für Biochemie. Der Krankheitserreger tarnt sich also als Abfall und täuscht so Zellen, die Bruchstücke von toten Zellen aufnehmen.

In ihrer Arbeit, die soeben im Fachmagazin Science veröffentlicht wurde, zeigen die ETH-Forscher, dass sich das Vaccinia-Virus mit Hilfe von langen fadenförmigen Fortsätzen, sogenannten Filopodien, zur Zelle hinbewegt. Sobald die Filopodien auf der Zellmembran auftreffen, bildet sich dort eine Ausstülpung, ein Bleb. Auslöser für die Bildung einer Ausstülpung ist das Virus selbst. Es „klopft“ mit einem Botenstoff an, löst dadurch im Innern der Zelle eine Signal-Kettenreaktion, so dass sich der Bleb bildet. Das Virus wird umfasst und in die Zelle eingeschleust.

„Die Viren sind Trojanische Pferde, die nach Troja hinein wollen. Die Trojaner sind die vielen Proteine, welche die Signale übermitteln und die Aufnahme des unwillkommenen Gastes einleiten“, sagt ETH-Biochemieprofessor Helenius. Um herauszufinden, welche Trojaner das Virus hereinlassen, untersuchte Mercer mit Unterstützung der Gruppe von Professor Lukas Pelkmans über 7000 verschiedene Proteine. Schliesslich liessen sich rund 140 potenzielle Kandidaten, die massgeblich an der Signalkette beteiligt sind, eingrenzen. Als besonders „hilfsbereit“ für den Virus entpuppte sich ein Enzym, die Kinase PAK1. Ohne PAK1 bildet die angegriffene Zelle keine Ausstülpungen.

Prof. Helenius und sein Team forschen intensiv an der Frage, wie es den verschiedenen Viren gelingt, in Körperzellen einzudringen. Über den Mechanismus der Vaccinia-Viren war bisher nur wenig bekannt. „Diese Strategie ist für uns neu“, meint Ari Helenius. Dieselbe Strategie wie Vaccinia-Viren nutzen wahrscheinlich auch andere grosse Viren, wie Herpes-, Adeno- und HI-Viren.

Die Kenntnis der Virusstrategien und der an einer Virenaufnahme beteiligten Signalproteine ist wichtig, um neue Wirkstoffe gegen die Krankheitserreger zu finden und zu entwickeln. Bisher zielten antivirale Medikamente auf das Virus selbst. Helenius dagegen sucht nach Wirkstoffen, die die Signalkette unterbrechen und so die Kommunikation zwischen Virus und Zelle vereiteln. Wenn die Zelle einen Virus nicht aufnimmt, kann sich dieser auch nicht vermehren und wird überdies vom Immunsystem rasch eliminiert. Der Forschungsansatz von Prof. Helenius hat einen zusätzlichen Vorteil: „An die Blockierung der Signalkette können sich Viren nicht so rasch anpassen“, so der ETH-Professor.

Weitere Informationen:
ETH Zürich
Prof. Dr. Ari Helenius
Institut für Biochemie
Tel: +41 44 632 68 17
E-Mail: ari.helenius@bc.biol.ethz.ch
ETH Zürich
Jason Mercer (nur englisch)
Institut für Biochemie
Tel: +41 44 632 58 18
E-Mail: jason.mercer@bc.biol.ethz.ch

Media Contact

Franziska Schmid idw

Weitere Informationen:

http://www.ethz.ch

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nanofasern befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Wenn Immunzellen den Körper bewegungsunfähig machen

Weltweit erste Therapie der systemischen Sklerose mit einer onkologischen Immuntherapie am LMU Klinikum München. Es ist ein durchaus spektakulärer Fall: Nach einem mehrwöchigen Behandlungszyklus mit einem immuntherapeutischen Krebsmedikament hat ein…

Partner & Förderer