Störfall in der Proteinfabrik

Die Protein-Biosynthese ist einer der wichtigsten Prozesse in jeder lebenden Zelle. Dabei wird der genetische Code in eine Kette von Aminosäuren übersetzt, die sich dann zu der dreidimensionalen Struktur eines Proteins faltet. Ist die Protein-Biosynthese gestört, gerät die Maschinerie des Lebens ins Stocken.

Daher ist sie ein beliebtes Angriffsziel anti-mikrobieller Wirkstoffe, die unerwünschte Krankheitserreger abtöten sollen. Und so greifen die meisten der neu entwickelten Antibiotika genau in diesen komplexen Prozess am Ribosom ein.

Wissenschaftlern des Exzellenzclusters Makromolekulare Komplexe an der Goethe Universität Frankfurt ist es nun erstmals gelungen, das Andocken von Antibiotika an einem neuen Ort der bakteriellen Proteinfabrik, dem Ribosom, in drei Dimensionen sichtbar zu machen. Dabei gewannen sie zusätzlich neue Erkenntnisse über den Prozess der Protein-Biosynthese, wie sie in der aktuellen Ausgabe im Titelbeitrag der Fachzeitschrift Molecular Cell berichten.

Das Ribosom setzt sich zu Beginn der Protein-Biosynthese aus zwei Untereinheiten zusammen, einer kleinen Untereinheit, die für die Übersetzung des genetischen Codes verantwortlich ist, und einer großen Untereinheit, an welcher die Aminosäuren zu einer Kette verknüpft werden. Strukturelle Erkenntnisse über Bindungsstellen und Funktion von Antibiotika an der großen Untereinheit bezogen sich bisher alle auf den Ort, an dem das neu entstehende Protein zusammengestellt wird (Peptidyl-Transferase-Zentrum).

Wissenschaftlern um Prof. Dr. Paola Fucini vom Frankfurter Exzellenzcluster ist es jetzt mittels Röntgenstrukturanalyse gelungen, die Störung einer weiteren wichtigen Funktionsregion (GTPase Associated Region) durch die Einwirkung von drei Thiopeptid-Antibiotika auf struktureller Ebene darzustellen. Dabei ergaben sich nicht nur wichtige Erkenntnisse für die Entwicklung neuer, wirksamer Antibiotika, sondern es wurde auch ein weiteres Puzzleteil zur genauen Kenntnis des Ablaufs der Protein-synthese gefunden.

Die Proteinbiosynthese im Ribosom ähnelt dem Knüpfen einer langen Proteinkette an einem Fließband. Entscheidend für einen störungsfreien Ablauf ist die korrekte Positionierung sowie das geordnete Weiterrücken der transfer-RNA (tRNA) auf dem Fließband, auch Translokation genannt. Die tRNA liest sozusagen an einem Ende den Bauplan für das zu synthetisierende Protein und stellt am anderen Ende die entsprechende Aminosäure bereit. Die dafür notwendige Energie wird von so genannten Elongations-Faktoren bereitgestellt, die an die GTPase Associated Region im Ribosom andocken.

Wie stören Antibiotika diesen Prozess? Die Forschergruppe fand heraus, dass zwei der untersuchten Antibiotika (Thiostrepton und Nosiheptide) sich mit der Kontaktregion des Elongations-Faktors-G (EF-G) überlagern und damit den Energie-Nachschub blockieren. Darüber hinaus bewirken sie eine Konformationsänderung der molekularen Umgebung, so dass die korrekte Bindung und Funktion dieses Elongations-Faktors nicht mehr möglich ist. Damit wird die korrekte Positionierung der t-RNA verhindert, was letztendlich zum Stillstand der Proteinbiosynthese auf dem ribosonalen Fließband führt.

Micrococcin, das dritte untersuchte Antibiotikum, bewirkt dagegen fast das genaue Gegenteil: Es führt zu einer Konformationsänderung, die die Bindung eines relativ flexibel bewegbaren ribosomalen Proteins unterstützt und damit die optimale Kontaktumgebung für den Elongatonsfaktor schafft. Dies konnte im Rahmen der Forschungskooperation, an der auch das Max-Planck-Institut für Molekulare Genetik und die Charité in Berlin sowie die Universitäten in München und Marburg beteiligt waren, zum ersten Mal auf struktureller Ebene dargestellt werden. Die antimikrobielle Wirkung des Antibiotikums besteht in diesem Fall darin, ausschließlich diesen einen Zustand auszubilden, so dass die relativ variable Region für die anderen Zustände sowie andere Elongations-Faktoren blockiert sind. Somit kommt auch hierbei die Proteinbiosynthese zum Stillstand.

Obwohl die hier untersuchten Antibiotika nicht auf menschliche oder tierische Zellen wirken, geht aus aktuellen Untersuchungen hervor, dass sie auch Einfluss auf das Wachstum der Malaria Parasiten haben. Mit Sicherheit können die gewonnenen strukturellen Bindungsinformationen gezielt verwendet werden, um neue Medikamente zu erzeugen.

Beitrag in der Fachzeitschift Molecular Cell:
http://www.molecule.org/content/issue?volume=30&issue=1
Weitere Informationen:
Prof. Dr. Paola Fucini, Institut für Organische Chemie und Chemische Biologie, Campus Riedberg, Max-von-Laue-Str. 7,
60438 Frankfurt, Tel.: 069-798 29145
E-Mail: fucini@chemie.uni-frankfurt.de sowie
Dr. Jörg Harms, Tel.: 01785102447
E-Mail: harms@chemie.uni-frankfurt.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ideen für die Zukunft

TU Berlin präsentiert sich vom 22. bis 26. April 2024 mit neun Projekten auf der Hannover Messe 2024. Die HANNOVER MESSE gilt als die Weltleitmesse der Industrie. Ihr diesjähriger Schwerpunkt…

Peptide auf interstellarem Eis

Dass einfache Peptide auf kosmischen Staubkörnern entstehen können, wurde vom Forschungsteam um Dr. Serge Krasnokutski vom Astrophysikalischen Labor des Max-Planck-Instituts für Astronomie an der Universität Jena bereits gezeigt. Bisher ging…

Wasserstoff-Produktion in der heimischen Garage

Forschungsteam der Frankfurt UAS entwickelt Prototyp für Privathaushalte: Förderzusage vom Land Hessen für 2. Projektphase. Wasserstoff als Energieträger der Zukunft ist nicht frei verfügbar, sondern muss aufwendig hergestellt werden. Das…

Partner & Förderer