Bochumer Chemiker bauen Nano-Dodekaeder aus DNA

Einen Nanometer kleinen, elastischen Dodekaeder – einen geometrischen Körper mit zwölf Flächen – haben Chemiker der Ruhr-Universität Bochum um Prof. Dr. Günter von Kiedrowski aus der Erbsubstanz DNA erzeugt. Der Nano-Hohlkörper ist das Ergebnis eines zuvor genau ausgeklügelten Selbstorganisationsprozesses, in dem sich 20 einzelne DNA-Bausteine kontrolliert zusammenfinden.

Die Bausteine, sog. Trisoligonucleotide, bestehen aus drei kurzen DNA-Einzelsträngen, die an einem Ende miteinander verknüpft sind. Über ihre Experimente berichten die Forscher in der aktuellen Ausgabe der Zeitschrift „Angewandte Chemie“.

Vorausberechnete Bausteine

Die Zentren der dreibeinigen Bausteine, an denen die drei Einzelstränge verknüpft sind, bilden die Ecken des Dodekaeders. Die jeweils überlappenden Einzelstränge der verschiedenen Bausteine verbinden sich miteinander zu je einem DNA-Doppelstrang und sorgen so für Stabilität des entstehenden Hohlkörpers. Damit sich die Bausteine nicht „wild“ zu irgendeiner beliebigen Form zusammensetzen konnten, mussten die Forscher sie maßschneidern:

Basierend auf der Tatsache, dass sich nur jeweils komplementäre DNA-Einzelstränge miteinander verbinden können, berechneten sie im Computer den optimalen „Bausatz“. Er besteht aus 30 doppelsträngigen DNA-Sequenzen, die jeweils 15 Basenpaare lang sind. Die Doppelstränge wurden den Kanten des Dodekaeders zugewiesen und anschließend berechnet, welche je drei Einzelstränge zu einem Baustein verknüpft werden müssen, damit sich der gewünschte Körper bildet.

Winzig kleine Softbälle

Die Forscher stellte die 20 berechneten Einzelteile her und verknüpfte die jeweils drei Einzelstränge mittels eines Kohlenstoffrings. Dann gaben sie den „Bausatz“ – die entstandenen dreibeinigen Bausteine zu je gleichen Teilen – in eine Pufferlösung. Unter dem Rasterkraftmikroskop fanden sie dann tatsächlich wie erwartet gleichförmige Partikel mit 20 Nanometer Durchmesser, die sich auf bis zu vier Nanometer Höhe zusammenpressen lassen, ohne Schaden zu nehmen. „Die Dodekaeder sind wie Softbälle deformierbar“, veranschaulicht Prof. von Kiedrowski, „davon könnten künftige Anwendungen profitieren. Anwendungen sind in vielen Bereichen denkbar, von der medizinischen Diagnostik bis hin zur Nanoelektronik. Wenn man die Bausteine und somit den Nanokörper mit zusätzlichen Ärmchen ausstattet, ließen sich daran auch funktionale Moleküle befestigen.

Titelaufnahme

Jan Zimmermann, Martin P. J. Cebulla, Sven Mönninghoff und Günter von Kiedrowski: Selbstorganisation eines DNA-Dodekaeders aus 20 Trisoligonucleotiden mit C3h-Linker. In: Angewandte Chemie 2008, 120, DOI: 10.1002/ange.200702682

Weitere Informationen

Prof. Dr. Günter von Kiedrowski, Lehrstuhl für Organische Chemie I, Fakultät für Chemie und Biochemie der Ruhr-Universität Bochum, 44780 Bochum, Tel. 0234/32-23218, E-Mail: kiedro@ruhr-uni-bochum.de

Media Contact

Dr. Josef König idw

Weitere Informationen:

http://www.ruhr-uni-bochum.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer