Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Verlockungen des Immunsystems: Wie sich Abwehrzellen bewegen

14.02.2008
Erste Peter Hans Hofschneider Stiftungsprofessur für Molekulare Medizin
geht an Dr. Michael Sixt vom Max-Planck-Institut für Biochemie in Martinsried

Kaum hat sich ein Mensch mit einem Erreger infiziert, arbeitet das Immunsystem schon auf Hochtouren: In kürzester Zeit produziert es Millionen von Abwehrzellen, die den Eindringling erkennen und beseitigen. Wie aber schafft es der Körper, Abwehrzellen zu bilden, die genau zu dem jeweiligen Erreger passen? Und wie bewegen sie sich dann durch den Körper?

Den Antworten auf solche Fragen ist der Mediziner Michael Sixt vom Max-Planck-Institut für Biochemie in Martinsried auf der Spur. Für seine Arbeiten wird er nun mit der ersten Peter Hans Hofschneider Stiftungsprofessur ausgezeichnet.

Sixt und seine Mitarbeiter konzentrieren sich besonders auf dendritische Zellen - die Detektive des Immunsystems, die alle Körperoberflächen von innen und außen besiedeln. Sobald sie einen Eindringling aufgespürt, gefressen und zerkleinert haben, wandern sie über die Lymphbahnen in den Lymphknoten. Dort präsentieren sie anderen Zellen des Immunsystem (T-Zellen) die gefressenen Eiweißbruchstücke des Erregers. Das Problem: Unter Milliarden verschiedener T-Zellen passen nur einige wenige zu einem bestimmten Erreger. Die Lösung des Problems ist Geschwindigkeit: Die Zellen schwärmen rasend schnell umher und tasten sich gegenseitig ab. Findet sich die passende T-Zelle für den Eindringling, wird die Zelle zur Teilung angeregt. Ihre Nachkommen werden dann millionenfach in den Blutkreislauf freigesetzt und von dort zurück in das infizierte Gewebe transportiert.

... mehr zu:
»Abwehrzelle »Immunsystem »T-Zelle

Michael Sixt studiert die Bewegungen der Immunzellen "live" unter dem Mikroskop. Ihn interessiert vor allem, wie ihr Wanderungsverhalten gesteuert wird. Dabei spielen bestimmte Botenstoffe (Chemokine) eine besondere Rolle. Sie können dendritische Zellen und T-Zellen anlocken und ihre Geschwindigkeit und Wanderungsrichtung koordinieren. Sixt fand bereits heraus, wie die Chemokine die Immunzellen verformen und schließlich in Bewegung versetzen, damit diese schnell und effizient ihre Wege im Immunsystem zurücklegen können.

Die Peter Hans Hofschneider Stiftungsprofessur wird Michael Sixt jetzt eine Verlängerung seiner Forschungsarbeit am Max-Planck-Institut für Biochemie ermöglichen. Für die kommenden 3 Jahre ist die Finanzierung seiner Forschung gesichert, mit der Aussicht auf Verlängerung um weitere 2 Jahre. Mit der Auszeichnung sind nicht nur das eigene Gehalt des Wissenschaftlers, sondern auch eine zusätzliche Doktorandenstelle und Sachmittel verbunden.

Die Jury zeigte sich nicht zuletzt beeindruckt von den experimentellen Fähigkeiten des jungen Mediziners. Bei allem Publikations- und Wettbewerbsdruck in der biomedizinischen Forschung dokumentierten die Arbeiten von Michael Sixt in vorbildlicher Weise, dass gerade mit Ruhe durchdachte Forschung zu besonderen Ergebnissen führen kann. "Ich freue mich unheimlich über die Auszeichnung. Sie gibt mir und meiner Arbeitsgruppe die Freiheit, unter den außergewöhnlichen Arbeitsbedingungen des Max Planck Instituts zu verwirklichen, wofür wir in den letzten drei Jahren den Grundstein gelegt haben", sagt Michael Sixt.

Die künftig alle zwei Jahre ausgeschriebene Stiftungsprofessur wurde nach Prof. Dr. Dr. Peter Hans Hofschneider benannt, einem ehemaligen Direktor am Max-Planck-Institut für Biochemie und Pionier der Molekularen Medizin, der 2004 verstarb. Die Stiftung Experimentelle Biomedizin hat ihren Sitz in Zürich und vergibt neben der Professur auch einen Recherchepreis für Wissenschafts- und Medizinjournalismus. Der wissenschaftliche Stiftungsbeirat besteht aus Prof. Dr. Sabine Werner (ETH Zürich / Vorsitz), Prof. Dr. Michael Stürzl (Universitätsklinikum Erlangen), Prof. Dr. Eberhard Hildt (Universitätsklinikum Freiburg / Universität Kiel) und Prof. Holger Wormer (Universität Dortmund).

Die Urkunde für die Stiftungsprofessur wird einen Tag nach Hofschneiders 79. Geburtstag von Herrn Rudolf Rechsteiner, Mitglied des Stiftungsrats der Stiftung, überreicht. Im Anschluss darin wird Michael Sixt seine Forschung vorstellen unter dem Titel: "Mechanisms of interstitial leukocyte migration".

Sie sind herzlich eingeladen zur Verleihung der ersten
Peter Hans Hofschneider Stiftungsprofessur am
15. Februar 2008 um 15 Uhr
am Max-Planck-Institut für Biochemie
Martinsried bei München
Gebäude T, Kleiner Hörsaal
Weitere Informationen und Kontakt:
Über die Stiftung Experimentelle Biomedizin
c/o BLUM Rechtsanwälte
Usteristr.14
CH 8021 Zürich/Schweiz
info@experimentelle-biomedizin.ch
Tel.+41 (43)443 8800
http://www.experimentelle-biomedizin.ch
Über die Forschungsgruppe von Dr. Michael Sixt
Dr. Michael Sixt
sixt@biochem.mpg.de
http://www.biochem.mpg.de/en/rd/faessler/rg/sixt/
Über das Max-Planck-Institut für Biochemie
Öffentlichkeitsarbeit
Eva-Maria Diehl
Tel. 089 8578 2824; mobil: 0160 90775686
diehl@biochem.mpg.de

Eva-Maria Diehl | idw
Weitere Informationen:
http://www.biochem.mpg.de/
http://www.biochem.mpg.de/news

Weitere Berichte zu: Abwehrzelle Immunsystem T-Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forschende entdecken, wie äußere Reize den Auf- und Abbau des Skeletts im Kern von Säugetierzellen steuern
22.11.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Austernsterben: Amerikanische Pantoffelschnecke ist unschuldig
22.11.2019 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forschende entdecken, wie äußere Reize den Auf- und Abbau des Skeletts im Kern von Säugetierzellen steuern

Nicht nur in Muskelzellen spielen sie die Hauptrolle: Die Aktinfilamente sind eines der häufigsten Proteine in allen Säugetierzellen. Die fadenförmigen Strukturen bilden einen wichtigen Teil des Zellskeletts und -bewegungsapparats. Zellbiologinnen und -biologen der Universität Freiburg zeigen nun in Zellkulturen, wie Rezeptorproteine in der Membran dieser Zellen Signale von außen an Aktinmoleküle im Kern weiterleiten, die daraufhin Fäden bilden.

Das Team um Pharmakologe Prof. Dr. Robert Grosse steuert in einer Studie den Auf- und Abbau der Aktinfilamente im Zellkern mit physiologischen Botenstoffen und...

Im Focus: Neuartiges Antibiotikum gegen Problemkeime in Sicht

Internationales Forscherteam mit Beteiligung der Universität Gießen entdeckt neuen Wirkstoff gegen gramnegative Bakterien – Darobactin attackiert die Erreger an einem bislang unbekannten Wirkort

Immer mehr bakterielle Erreger von Infektionskrankheiten entwickeln Resistenzen gegen die marktüblichen Antibiotika. Typische Krankenhauskeime wie Escherichia...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Kleine Teilchen, große Wirkung: Wie Nanoteilchen aus Graphen die Auflösung von Mikroskopen verbessern

Konventionelle Lichtmikroskope können Strukturen nicht mehr abbilden, wenn diese einen Abstand haben, der kleiner als etwa die Lichtwellenlänge ist. Mit „Super-resolution Microscopy“, entwickelt seit den 80er Jahren, kann man diese Einschränkung jedoch umgehen, indem fluoreszierende Materialien eingesetzt werden. Wissenschaftlerinnen und Wissenschaftler am Max-Planck-Institut für Polymerforschung haben nun entdeckt, dass aus Graphen bestehende Nano-Moleküle genutzt werden können, um diese Mikroskopie-Technik zu verbessern. Diese Nano-Moleküle bieten eine Reihe essentieller Vorteile gegenüber den bisher verwendeten Materialien, die die Mikroskopie-Technik noch vielfältiger einsetzbar machen.

Mikroskopie ist eine wichtige Untersuchungsmethode in der Physik, Biologie, Medizin und vielen anderen Wissenschaften. Sie hat jedoch einen Nachteil: Ihre...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage 2020: „Mach es einfach!“

18.11.2019 | Veranstaltungen

Humanoide Roboter in Aktion erleben

18.11.2019 | Veranstaltungen

1. Internationale Konferenz zu Agrophotovoltaik im August 2020

15.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der Gewinner ist… Vorankündigung zum 11. Corporate Health Award

22.11.2019 | Förderungen Preise

Erste Liga der Automobilzulieferer

22.11.2019 | Förderungen Preise

Forschende entdecken, wie äußere Reize den Auf- und Abbau des Skeletts im Kern von Säugetierzellen steuern

22.11.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics