Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Flexibel in Form für die DNA - Bindungsmodell eines Enzyms aufgeklärt

14.02.2008
Für viele essentielle Prozesse der Zelle müssen sich Enzyme entlang der DNA bewegen. Im Zellkern höherer Organismen liegt das fadenförmige Erbmolekül aber dicht gepackt und assoziiert mit Proteinen vor. Bestimmte zelluläre Faktoren räumen diese Hindernisse aus dem Weg und erleichtern damit den Zugang zur DNA.

Enzyme der Swi2/Snf2-Superfamilie etwa sind dazu in der Lage. Diese Moleküle sind auch aus medizinischer Sicht interessant, weil sie in defekter Form zu Leiden wie dem neurodegenerativen Cockayne-Syndrom führen können. Ein Forscherteam vom Department für Chemie und Biochemie der Ludwig-Maximilians-Universität (LMU) München um Professor Jens Michaelis und Professor Karl-Peter Hopfner hat nun die Arbeitsweise eines Swi2/Snf2-Mitglieds untersucht.

Das Projekt wurde auch von den beiden Exzellenzclustern "Center for Integrated Protein Science Munich (CIPSM)" und "Nanosystems Initiative Munich (NIM)" unterstützt. Wie in der online-Ausgabe des Fachmagazins "Nucleic Acids Research" berichtet, liegt das Enzym in mindestens zwei unterschiedlichen Konformationen, also strukturellen Anordnungen, vor. Insgesamt lassen die Daten auf ein Vorgehen des Enzyms mit verschiedenen Stufen schließen, was sich als Modell möglicherweise auf verwandte Moleküle übertragen lässt.

DNA wird oft in ihrer strukturell genau definierten Form als Chromosomen dargestellt, obwohl es nur vor und während der Zellteilung in dieser Gestalt vorliegt. Meist füllt die DNA den Zellkern als Chromatin, eine amorphe Masse aus hoch strukturiertem Erbmolekül, mit dem verschiedene Proteine assoziieren. So wickelt sich die fadenförmige DNA um Histonproteine und bildet mit diesen größere Untereinheiten, die Nukleosomen. Swi2/Snf2-Enzyme gehören zu einer evolutionären Familie von molekularen Maschinen, die Komplexe aus DNA und Proteinen lösen können. Dies dient meist dazu, die DNA für zelluläre Prozesse wie die Transkription oder Abschrift, die Replikation oder Verdopplung, und die Reparatur des Erbmaterials zugänglich zu machen.

... mehr zu:
»DNA »Enzym »Molekül »Protein

Vor wenigen Jahren erst gelang Hopfner und seinem Team die Bestimmung der Kristallstruktur der katalytischen Domäne eines Swi2/Snf2-Enzyms, des eigentlich enzymatisch aktiven Zentrums also. Dabei zeigte sich, dass Swi2/Snf2-Enzyme unter Energieverbrauch an der so genannten kleinen Furche, das ist eine Seite der DNA, entlanglaufen. Diese Aktivität erzeugt vermutlich ein "Drehmoment", das die DNA von den assoziierten Proteinen trennt.

Die Energie für diesen Vorgang stammt aus der Spaltung des energiereichen ATP-Moleküls durch die Swi2/Snf2-Enzyme, die damit als so genannte ATPasen wirken. Unklar war allerdings, wie die durch Energieumsatz verursachten strukturellen Änderungen aussehen, die letztlich den Motor antreiben. In der vorliegenden Studie untersuchten die Forscher deshalb die katalytische Domäne einer Swi2/Snf2-ATPase mit dem langen Namen "Sulfolobus solfataricus Rad54 homologue", kurz SsoRad54cd. Zum Einsatz kam dabei unter anderem der so genannte "Fluorescence resonance energy transfer (FRET)", der relative Abstände zwischen zwei fluoreszierenden Farbstoffen auf kleinster Skala bestimmen kann. Sind die Farbstoffe an biologische oder chemische Strukturen gekoppelt, lässt sich so auf deren Entfernung rückschließen.

"Wir konnten zeigen, dass das Enzym in mindestens zwei Konformationen vorkommt", so Michaelis. "Nach der Bindung an die DNA geht die offene Konformation in die geschlossene über. Sobald dann aber ATP gebunden hat, erfolgt keine Änderung mehr bis das energiereiche Molekül gespalten ist. Wichtig für die Funktion des Enzyms ist jedoch, dass dieses zu jedem Zeitpunkt eine hohe Flexibilität aufweist. Dies konnte in Experimenten an einzelnen Proteinmolekülen direkt beobachtet werden." Insgesamt deuten die Daten auf ein Vorangehen des Enzyms, das verschiedene Stufen beinhaltet. Das neu präsentierte Modell kann nun möglicherweise auch auf andere Swi2/Snf2-Mitglieder übertragen werden.

Publikation:
"Conformational changes of a Swi2/Snf2 ATPase during its mechano-chemical cycle",
Robert Lewis, Harald Dürr, Karl-Peter Hopfner and Jens Michaelis
"Nucleic Acids Research", online seit 12. Februar 2008
doi:10.1093/nar/gkn040
Ansprechpartner:
Professor Dr. Jens Michaelis
Department für Chemie und Biochemie der LMU
Tel.: 089 / 2180 - 77561
Fax: 089 / 2180 - 77560
E-Mail: jens.michaelis@cup.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.cup.uni-muenchen.de/pc/michaelis

Weitere Berichte zu: DNA Enzym Molekül Protein

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht IMMUNOQUANT: Bessere Krebstherapien als Ziel
19.10.2018 | Julius-Maximilians-Universität Würzburg

nachricht Auf dem Weg zu maßgeschneiderten Naturstoffen
19.10.2018 | Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Auf dem Weg zu maßgeschneiderten Naturstoffen

Biotechnologen entschlüsseln Struktur und Funktion von Docking Domänen bei der Biosynthese von Peptid-Wirkstoffen

Mikroorganismen bauen Naturstoffe oft wie am Fließband zusammen. Dabei spielen bestimmte Enzyme, die nicht-ribosomalen Peptid Synthetasen (NRPS), eine...

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Natürlich intelligent

19.10.2018 | Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ultraleichte und belastbare HighEnd-Kunststoffe ermöglichen den energieeffizienten Verkehr

19.10.2018 | Materialwissenschaften

IMMUNOQUANT: Bessere Krebstherapien als Ziel

19.10.2018 | Biowissenschaften Chemie

Raum für Bildung: Physik völlig schwerelos

19.10.2018 | Bildung Wissenschaft

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics