Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Molekül-Baukasten im Rasterkraftmikroskop: Biologische Prozesse maßgeschneidert ohne lebende Zellen

04.02.2008
Einzelne Moleküle nanometergenau an die gewünschte Stelle zu setzen, um daraus komplexe Systeme zu bauen: Das ist ein lang gehegter Traum vieler Wissenschaftler. Denn auf diese Weise könnte man zum Beispiel biologische Prozesse maßgeschneidert ohne lebende Zellen auf einem Chip durchführen.

Stefan Kufer und seine Kollegen aus der Arbeitsgruppe von Professor Hermann Gaub, Lehrstuhl für Experimentelle Physik-Biophysik an der Ludwig-Maximilians-Universität (LMU) München, haben diesen Traum nun realisiert. Ihnen gelang es, mit einem Rasterkraftmikroskop (AFM) einzelne Moleküle aus einem Depotbereich aufzunehmen und auf einer Montagefläche nanometergenau wieder abzusetzen.

Dabei machten sie sich die Präzision des AFM und die einstellbare Bindungsfähigkeit des DNA-Moleküls zunutze: Abschnitte der Erbinformation wurden zum Greifen und Absetzen der Moleküle verwendet. Die Arbeit im Rahmen des Exzellenzclusters "Nanosystems Initiative Munich" (NIM) wurde in der aktuellen Ausgabe der Fachzeitschrift "Science" veröffentlicht.

Von der Herstellung maßgeschneiderter lebender Zellen mit bestimmten biologischen Funktionalitäten, etwa zur Aufspaltung von Erdöl, ist derzeit oft die Rede. Aber Fachkreise diskutieren seit Jahren auch einen alternativen Konstruktionsansatz für funktionale Nanosysteme. Dabei sollen in einem Rasterkraftmikroskop (AFM) biologische Strukturen aus einzelnen Molekülen Stück für Stück zusammengesetzt werden - verwirklicht wurde diese Idee bisher aber nicht.

Dabei ist das Grundprinzip zum gezielten Positionieren von Molekülen mittels AFM auf den ersten Blick recht einfach. Man steuert die AFM-Spitze wie einen Kran zu einer Depotfläche und nimmt ein einzelnes Molekül auf. Jetzt muss die Spitze nur noch zu einer Montagefläche bewegt werden, wo man das Molekül wieder absetzen will. Aber genau da tritt nun das entscheidende Problem auf. Es gab bisher bei keinem der in Frage kommenden Greif-Mechanismen eine Möglichkeit zur Trennung des Moleküls von der AFM-Spitze, denn die anziehende Kraft lässt sich nicht einfach abschalten. Das Molekül hängt an der Spitze fest und kann nicht wieder abgesetzt werden.

Dieses als "Sticky Fingers", auf deutsch "klebrige Finger", bezeichnete Problem galt bisher als grundlegendes Hindernis für die Umsetzung einer Molekül-Baukasten-Technik mittels AFM. Die Münchener Forscher haben nun eine Lösung gefunden. Sie machen sich dabei sogar die eigentlich störende Klebrigkeit zunutze, indem sie ein System mit unterschiedlich starken Klebrigkeiten verwenden. Zur Aufnahme des zu versetzenden Moleküls sitzt an seiner Oberseite ein DNA-Abschnitt als eine Art Haken. Ein komplementäres DNA-Stück befindet sich an der Spitze des AFM. Aber auch an der Unterseite wird das Molekül mit einem DNA-Stück verbunden. Und ebenfalls auf der Montage-Fläche, auf der das Molekül abgesetzt werden soll, befinden sich ähnlich wie an der AFM-Spitze DNA-Gegenstücke. Diese binden aber stärker aneinander als die an der Spitze. Wird die Spitze nach dem Absetzen des Moleküls nun nach oben gezogen, so bleibt es auf der Montagefläche haften, löst sich aber von der AFM-Spitze. Die unterschiedlichen Bindungsstärken der DNA-Verbindungen lassen sich durch eine geschickte Wahl der DNA-Längen und der geometrischen Anordnung einstellen.

Zur Überprüfung der neuen Technik haben die Biophysiker auf einem Glasträger räumlich getrennte Depot- und Montageflächen angelegt. Auf den Depotflächen werden verschiedene Arten von Farbstoffmolekülen gelagert. Die Montagefläche ist mit freien DNA-Abschnitten bedeckt, einer Art "DNA-Rasen". Nach der Präparation wird die Probe in einem Rasterkraftmikroskop montiert. Um die Lage der Depots auf der Probe exakt zu vermessen, wird diese von unten mit einem Fluoreszenzmikroskop betrachtet. So lassen sich die Depots anhand der unterschiedlichen Fluoreszenzsignale gut erkennen und für die Manipulation im AFM positionieren. Mit der AFM-Spitze werden dann einzelne Farbstoffmoleküle aus den Depots aufgenommen und auf der Montagefläche gezielt in geometrischen Anordnungen deponiert. Auf diese Weise konnten unter Verwendung einer einzigen Spitze mehrere tausend Moleküle einzeln platziert werden.

Der Biophysiker Stefan Kufer ist sich sicher, mit diesem neuen Verfahren eine "Basis-Technologie" entwickelt zu haben, mit der sich in Zukunft beliebige molekulare Bausteine zu neuen funktionalen Systemen im Nanometerbereich zusammenfügen lassen. So ließen sich durch die bewusste Anordnung von Enzymen auf einem Bio-Chip womöglich komplexe biologische Prozesse auf Einzelmolekülebene mechanisch kontrolliert realisieren, die sonst nur in lebenden Zellen ablaufen können, etwa die Produktion von Insulin oder der Abbau von Schadstoffen.

Professor Hermann Gaub bekräftigt, dass es ihm und seinen Mitarbeitern dank eigener jahrzehntelanger Erfahrung nun gelungen sei, eine "riesige Spielwiese zu schaffen, auf der man seinen Gestaltungswillen ausleben kann." So beschränkt sich die Methode auch nicht auf rein biologische Systeme. Prinzipiell sollten sich sogar Strukturen aus der Informationstechnologie auf diese Weise zusammensetzen lassen, etwa Quantenpunkte oder winzige Magnetstrukturen. "An die DNA kann man anhängen, wozu man Lust hat", schwärmt Gaub.

Die Arbeit, die in der aktuellen Ausgabe von "Science" veröffentlicht wurde, fand im Rahmen des Exzellenzclusters "Nanosystems Initiative Munich (NIM)" statt, das es sich zum Ziel gesetzt hat, funktionale Nanostrukturen für Anwendungen in der Medizin und in der Informationsverarbeitung zu entwickeln und zu erforschen.

Veröffentlichung:
"Single-Molecule Cut-and-Paste Surface Assembly",
S. K. Kufer, E. M. Puchner, H. Gumpp, T. Liedl, H. E. Gaub,
Science, Bd. 319, Nr. 5863, S. 594-596, 2008
Ansprechpartner:
Prof. Dr. Hermann Gaub
Ludwig-Maximilians-Universität München
und Nanosystems Initiative Munich
Tel.: +49 89 2180 3172
E-Mail: gaub@physik.uni-muenchen.de
Dr. Peter Sonntag
Nanosystems Initiative Munich
Presse- und Öffentlichkeitsarbeit
Tel.: +49 89 2180 5091
E-Mail: peter.sonntag@lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.nano-initiative-munich.de
http://www.nano-initiative-munich.de/press/press-material/

Weitere Berichte zu: AFM Molekül Nanosystem Rasterkraftmikroskop

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Hippo - Ein neuer Akteur für die Gehirngröße
24.04.2019 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Fledermäuse hören in 3D
24.04.2019 | Max-Planck-Institut für Ornithologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuer LED-Leuchtstoff spart Energie

Das menschliche Auge ist für Grün besonders empfindlich, für Blau und Rot hingegen weniger. Chemiker um Hubert Huppertz von der Universität Innsbruck haben nun einen neuen roten Leuchtstoff entwickelt, dessen Licht vom Auge gut wahrgenommen wird. Damit lässt sich die Lichtausbeute von weißen LEDs um rund ein Sechstel steigern, was die Energieeffizienz von Beleuchtungssystemen deutlich verbessern kann.

Leuchtdioden oder LEDs können nur Licht einer bestimmten Farbe erzeugen. Mit unterschiedlichen Verfahren zur Farbmischung lässt sich aber auch weißes Licht...

Im Focus: Münchner Lichtquanten-Destillerie

Garchinger Physiker entwickeln eine Technik, um reine einzelne Photonen zu extrahieren

Das Destillieren von Spirituosen steigert den Gehalt von Alkohol relativ zum Wasseranteil. Ähnlich wirkt eine Methode auf Lichtquanten, Photonen, die ein Team...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantenmaterie fest und supraflüssig zugleich

Forscher um Francesca Ferlaino an der Universität Innsbruck und an der Österreichischen Akademie der Wissenschaften haben in dipolaren Quantengasen aus Erbium- und Dysprosiumatomen suprasolide Zustände beobachtet. Im Dysprosiumgas ist dieser exotische Materiezustand außerordentlich langlebig, was die Tür für eingehendere Untersuchungen weit aufstößt.

Suprasolidität ist ein paradoxer Zustand, in dem die Materie sowohl supraflüssige als auch kristalline Eigenschaften besitzt. Die Teilchen sind wie in einem...

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Künstliche Intelligenz: Lernen von der Natur

17.04.2019 | Veranstaltungen

Mobilität im Umbruch – Conference on Future Automotive Technology, 7.-8. Mai 2019, Fürstenfeldbruck

17.04.2019 | Veranstaltungen

Augmented Reality und Softwareentwicklung: 33. Industrie-Tag InformationsTechnologie (IT)²

17.04.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer LED-Leuchtstoff spart Energie

24.04.2019 | Energie und Elektrotechnik

Control 2019: Fraunhofer IPT stellt High-Speed-Mikroskop mit intuitiver Gestensteuerung vor

24.04.2019 | Messenachrichten

Warum der moderne Mensch aus Afrika kommt

24.04.2019 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics