Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schlangen orten Beute über Vibrationswellen

30.01.2008
Biophysiker von TU München und Bernstein Zentrum für Computational Neuroscience publizieren in Physical Review Letters

Das Vorurteil, Schlangen seien taub, ist weit verbreitet - was wohl daran liegt, dass sie keine von außen sichtbaren Ohren haben und es nur wenig wissenschaftliche Indizien dafür gibt, dass sie hören können. Nichtsdestotrotz haben Schlangen ein Innenohr mit einer funktionsfähigen Hörschnecke (Cochlea).


Copyright 2002: R.D.L. Mastenbroek & Dexter Bressers

In einem aktuellen Artikel der Zeitschrift Physical Review Letters zeigen Wissenschaftler der Technischen Universität München (TUM) und des Bernstein Zentrums für Computational Neuroscience (BCCN), dass Schlangen dieses Organ nutzen können, um kleinste Vibrationen der Sandoberfläche wahrzunehmen, die durch die Bewegung von Beutetieren verursacht werden. Ihre Ohren sind so empfindlich, dass sie die Beute nicht nur kommen "hören", sondern auch unterscheiden können, aus welcher Richtung sie sich nähert. Die Arbeit wurde von Prof. J. Leo van Hemmen und Paul Friedel, Biophysiker an der TUM und dem BCCN, zusammen mit ihrem Kollegen Bruce Young von der Washburn University in Topeka (Kansas, USA) durchgeführt.

Jede Erschütterung auf einer sandigen Oberfläche verursacht Vibrationswellen, die sich von der Quelle aus auf der Oberfläche ausbreiten - so wie Wellen in einem Teich, nachdem ein Stein hineingeworfen wurde. Die Sandwellen breiten sich allerdings mit einer Geschwindigkeit von etwa 50 Metern pro Sekunde viel schneller aus als Wasserwellen und ihre Amplitude beträgt nur wenige tausendstel Millimeter. Dennoch kann eine Schlange diese winzigen Wellen wahrnehmen. Wenn sie ihren Kopf auf den Sand legt, werden die beiden Hälften des Unterkiefers durch die eintreffende Welle in Schwingung gebracht. Diese Schwingungen werden dann über eine Reihe von Knochen, die mit dem Unterkiefer verbunden sind, ins Innenohr übertragen. Dieser Prozess ist vergleichbar mit der Weiterleitung akustischer Signale durch die Hörknöchelchen im menschlichen Mittelohr. Die Schlange hört also im wahrsten Sinne des Wortes die Oberflächenwellen.

Säugetiere und Vögel können Geräusche orten, indem sie die zeitliche Verzögerung messen, mit der eine Schallwelle die beiden Ohren erreicht. Geräusche, die von rechts kommen, erreichen das rechte Ohr einen Bruchteil einer Sekunde früher als das linke. Für Geräusche, die von links kommen, ist das Umgekehrte der Fall. Aus dieser Zeitdifferenz berechnet das Gehirn, aus welcher Richtung ein Signal kommt.

Durch eine Kombination von Forschungsansätzen aus der Biomechanik, der Schiffsbautechnik und der Modellierung neuronaler Schaltkreise haben Friedel und seine Kollegen gezeigt, dass Schlangen mit ihrem ungewöhnlichen Hörsystem dieses Kunststück ebenfalls beherrschen. Die linke und rechte Hälfte des Unterkiefers einer Schlange hängen nämlich nicht starr zusammen. Vielmehr sind sie durch flexible Bänder miteinander verknüpft, die es der Schlange ermöglichen, ihr Maul enorm weit zu öffnen, um auch große Beutetiere zu verschlingen. Beide Hälften des Unterkiefers können sich so unabhängig voneinander bewegen. Legt die Schlange den Kopf auf den Boden, schaukeln sie ähnlich zwei einzelnen Boote auf einem See aus Sand und ermöglichen so das Hören in Stereo.

Eine Sandwelle, die von rechts kommt, wird die rechte Hälfte des Unterkiefers minimal früher erreichen, als die linke Seite und umgekehrt. Mit Hilfe mathematischer Modelle haben die Wissenschaftler die Bewegung des Unterkiefers in Antwort auf die eintreffende Oberflächenwelle berechnet. Sie konnten zeigen, dass der kleine Unterschied in der Ankunftszeit einer Welle zwischen dem rechten und dem linken Ohr ausreicht, der Schlange ein Richtungshören zu ermöglichen. Die neuronale Verschaltung des Gehirns erlaubt es ihr zu berechnen, aus welcher Richtung ein Geräusch kommt.

Die außergewöhnliche Beweglichkeit des Unterkiefers der Schlange ist in der Evolution entstanden, weil die Fähigkeit der Schlange, auf diese Weise sehr große Beutetiere verschlingen zu können, einen großen evolutionären Vorteil bietet, wenn Futterressourcen knapp sind und die Konkurrenz hart ist. Erst durch die Trennung der Unterkieferhälften wurde es möglich, auch diese besondere Form des Hörens hervorzubringen.

Originalveröffentlichung:
Paul Friedel, Bruce A. Young, and J. Leo van Hemmen.
Auditory localization of ground-borne vibrations in snakes
Physical Review Letters 100, 048701 (2008)
doi: 10.1103/PhysRevLett.100.048701
Kontakt:
Paul Friedel
Physik Department T35, TU München
Garching bei München, Germany
pfriedel@ph.tum.de
+49 89 289 12193
Prof. J. Leo van Hemmen
Physik Department T35, TU München
Garching bei München, Germany
lvh@tum.de
+49 89 289 12362
Prof. Bruce A. Young
Department of Biology
Washburn University
Topeka, KS 66621, USA
bruce.young@washburn.edu
+1 785 670 2166
Die Bernstein Zentren für Computational Neuroscience in Berlin, Freiburg, Göttingen und München werden vom Bundesministerium für Bildung und Forschung (BMBF) gefördert. Um die komplexe Struktur des Gehirns zu erforschen, verbindet die Computational Neuroscience Experiment, Computersimulation und Theoriebildung.

Katrin Weigmann | idw
Weitere Informationen:
http://www.t35.ph.tum.de/
http://www.bernstein-zentren.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics