Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Arrest in der Krebszelle

25.01.2008
Tumore des Kopf-Hals-Bereichs und des Dickdarms machen einen Großteil der Krebserkrankungen in Deutschland aus. Oftmals widersetzen sich die Krebsgeschwülste jedoch den gängigen Behandlungsmethoden durch die Bildung von Resistenzen.

Den Tumorzellen sichert hierbei ein kleines Molekül namens Survivin ihr Überleben. Einerseits hilft es, dem programmierten Zelltod zu entkommen, zum anderen geleitet es auch entartete Zellen sicher durch die Teilung.

Der Arbeitsgruppe um dem Mainzer Biologen Roland Stauber gelang es, einen zugrundeliegenden Mechanismus aufzuklären: Survivin bindet an einen Rezeptor, der es vom Zellkern in das Zytoplasma schleust, und es zu Beginn der Zellteilung an die Chromosomen bringt. Dies zu verhindern ist nun das Ziel eines neuartigen krebstherapeutischen Ansatzes, in welchem kleine Moleküle die Wanderung von Survivin in der Krebszelle unterbinden sollen. Unterstützt wird diese Forschungsarbeit von der Wilhelm Sander-Stiftung.

Die Tatsache, dass Tumorzellen Resistenzmechanismen zum Schutz gegen Krebstherapien entwickeln, ist sozusagen schon ein alter Hut. Auch eines der Schlüsselproteine, welches entscheidend an diesen Prozessen beteiligt ist, 'Survivin' - abgeleitet vom englischen 'to survive' (überleben) - feierte unlängst bereits seinen 10. Geburtstag. Survivin scheint dabei von den Tumorzellen als eine Art "Generalschlüssel" missbraucht zu werden, um sich gegen jene Mechanismen zu schützen, die in geschädigten Zellen den programmierten Zelltod (die Apoptose) auslösen.

Neu ist jedoch die Erkenntnis, dass "dies dem Molekül besonders gut gelingt, wenn es sich im Zytoplasma der Zelle befindet - im Inneren des Zellkerns kann es scheinbar nicht so wirkungsvoll agieren", erläutert Roland Stauber. Ihm und seiner Arbeitsgruppe am Mainzer Universitätsklinikum gelang es somit, ein wenig mehr Licht ins Dunkel des Survivin'schen Wirkmechanismus zu bringen. Damit Survivin seine Doppelfunktion ausüben kann, dockt es an einen Rezeptor namens Exportin-1 an. Dieser sitzt normalerweise in der Kernmembran und sorgt für das Ausschleusen verschiedener Proteine in das Zytoplasma der Zelle.

Während der Zellteilung wandert dieser Rezeptor jedoch kurzeitig an die Chromosomen - und mit ihm Survivin. "Dort überwacht es gemeinsam mit drei anderen Proteinen als sogenannter 'Chromosomaler Passenger Complex' die korrekte Aufteilung und Weitergabe des Erbguts an die Tochterzellen. Krebszellen scheinen diesen Mechanismus jedoch zu missbrauchen, um ihre geschädigten und veränderten Chromosomen sicher durch die Zellteilung zu geleiten", so Stauber.

Die Erkenntnis, dass Survivin im Zellkern tatsächlich weniger effektiv zu sein scheint, konnte bereits anhand klinischer Daten bestätigt werden: Patienten, in deren Tumoren Survivin zu größeren Mengen im Zellkern nachweisbar war, hatten in der Tat deutlich bessere Überlebenschancen als Patienten mit Survivin im Zytoplasma. Deshalb will Arbeitsgruppe nun versuchen, dieses kleine Eiweiß durch therapeutisch wirksame Substanzen vom Zytoplasma in den Zellkern zu zwingen, um so die Überlebenschancen der Krebspatienten zu erhöhen.

"Da Survivin aufgrund seiner dualen tumorfördernden Rolle zugleich zwei verschiedene Angriffspunkte bietet, könnte die gerichtete Hemmung des Kernexports von Survivin nicht nur die Resistenzbildung sondern auch die Wachstumsrate von Krebszellen hemmen", so der Biologe. Substanzen, welche den Durchgang durch die Zellmembran komplett blockieren, sind zwar bereits bekannt, jedoch therapeutisch nicht nutzbar, da sie äußerst toxisch auf alle Zellen wirken. Daher will die Mainzer Gruppe in Zusammenarbeit mit dem Berliner Zentrum für Molekulare Pharmakologie nach einem selektiven Schlüssel suchen. Also nach einer Substanz, die möglichst nur dem Survivin-Protein den Weg durch die Zellmembran versperrt, so dass diesem der Weg an den Ort seiner Aktivität, dem Zytoplasma, verwehrt wird.

Mit Hilfe selbst entwickelter zell-basierter Testsysteme wollen die Forscher umfangreiche chemische Substanzsammlungen durchforsten. Werden sie fündig, müssen die neuen Wirkstoffe zuerst ihre Wirksamkeit unter verschiedenen experimentellen Bedingungen im Labor unter Beweis stellen. Falls die Substanzen tatsächlich in der Lage sind, selektiv das Wachstum und das Überleben der Tumorzellen zu inhibieren, könnte dies die vielversprechende Grundlage für vorklinischen Studien sein, und damit zur Etablierung neuer Therapieoptionen für Krebspatienten führen.

Kontakt: Univ.-Prof. Dr. rer. nat. Roland H. Stauber, Mainz
Tel.: +49 (6131) 17-7002, E-Mail: rstauber@uni-mainz.de, Web: www.stauber-lab.de
Die Wilhelm Sander-Stiftung fördert dieses Forschungsprojekt mit über 150.000 €. Stiftungszweck der Stiftung ist die medizinische Forschung, insbesondere Projekte im Rahmen der Krebsbekämpfung. Seit Gründung der Stiftung wurden dabei insgesamt über 160 Mio. Euro für die Forschungsförderung in Deutschland und der Schweiz bewilligt. Die Stiftung geht aus dem Nachlass des gleichnamigen Unternehmers hervor, der 1973 verstorben ist.

Bernhard Knappe | idw
Weitere Informationen:
http://www.wilhelm-sander-stiftung.de

Weitere Berichte zu: Chromosom Krebszelle Survivin Tumorzelle Zellkern Zytoplasma

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht IMMUNOQUANT: Bessere Krebstherapien als Ziel
19.10.2018 | Julius-Maximilians-Universität Würzburg

nachricht Auf dem Weg zu maßgeschneiderten Naturstoffen
19.10.2018 | Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Auf dem Weg zu maßgeschneiderten Naturstoffen

Biotechnologen entschlüsseln Struktur und Funktion von Docking Domänen bei der Biosynthese von Peptid-Wirkstoffen

Mikroorganismen bauen Naturstoffe oft wie am Fließband zusammen. Dabei spielen bestimmte Enzyme, die nicht-ribosomalen Peptid Synthetasen (NRPS), eine...

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Natürlich intelligent

19.10.2018 | Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ultraleichte und belastbare HighEnd-Kunststoffe ermöglichen den energieeffizienten Verkehr

19.10.2018 | Materialwissenschaften

IMMUNOQUANT: Bessere Krebstherapien als Ziel

19.10.2018 | Biowissenschaften Chemie

Raum für Bildung: Physik völlig schwerelos

19.10.2018 | Bildung Wissenschaft

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics