Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was Algen den "Durchblick" verschafft

09.01.2008
Botaniker der Universität Jena klären Eiweiße und Modifikationen des Augenflecks von Algen auf

Wie und womit sehen Algen? Dieser Frage widmen sich Botaniker der Friedrich-Schiller-Universität Jena. Während es den Laien zunächst überraschen mag, dass Algen überhaupt "sehen" können, interessieren sich die Forscher um Prof. Dr. Maria Mittag für die Funktionsweise des "Sehapparates" der Grünalge Chlamydomonas reinhardtii. Die einzellige Alge kommt im feuchten Boden und in Süßwasser vor.


Die Signalverarbeitung bei der Lichtwahrnehmung der Grünalge "Chlamydomonas reinhardtii" verläuft wahrscheinlich nach ähnlichen Mechanismen wie bei Wirbeltieren. Das fanden Botaniker der Universität Jena um Prof. Dr. Maria Mittag heraus. Foto: Mittag/FSU

"Natürlich ist das 'Sehen' einzelliger Algen nicht direkt vergleichbar mit der Sinneswahrnehmung höherer Organismen", räumt die Professorin für Allgemeine Botanik ein. Aber, so macht die Forscherin deutlich, die Algen können Licht wahrnehmen und so "hell" und "dunkel" unterscheiden. Je nach seiner Intensität schwimmen sie gezielt auf das Licht zu oder von ihm weg. Diese Lichtwahrnehmung geschieht über den sogenannten Augenfleck, ein primitives visuelles System. Gemeinsam mit Kollegen der Uni Erlangen-Nürnberg haben die Jenaer Forscher nun die Eiweiße und Modifikationen des primitiven "Auges" dieser wenige Mikrometer (Tausendstel Millimeter) großen Algen aufgeklärt.

Dazu haben die Forscher sämtliche Eiweiße, aus denen der Augenfleck aufgebaut ist, isoliert und deren Struktur und Zusammensetzung analysiert. Über 200 Eiweiße konnten sie identifizieren und ihre Modifikationen im Augenfleck der Algen bestimmen. "Der Augenfleck befindet sich am Rande des Chloroplasten der Algenzelle", so Mittag. "Doch anders als dieser enthält der Augenfleck nur wenig des grünen Farbstoffs Chlorophyll", sagt die Botanikerin. Stattdessen enthält dieser große Mengen an Karotinoiden - orangefarbigen Pigmenten.

"Interessanterweise besitzt dieser primitive Augenfleck auch Eiweiße, welche in den Augen von Tieren und vom Menschen vorkommen", sagt Prof. Mittag und nennt als Beispiel ein Eiweiß mit Namen "SOUL-Häm-Bindeprotein". Hinweise darauf sind auch in der Netzhaut im Auge höherer Organismen zu finden. Ebenso sind diese auch in der Zirbeldrüse enthalten, jenem Organ im Gehirn, das bei Menschen und Tieren an der Steuerung des Tag-Nacht-Rhythmus beteiligt ist. Diese Ähnlichkeiten sind kein Zufall. "Ganz ähnlich wie Auge und Zirbeldrüse bei Säugern oder uns Menschen, steuert der Augenfleck die Lichtwahrnehmung und könnte somit an der Synchronisation des Tag-Nacht-Rhythmus' der Algen beteiligt sein", erläutert Prof. Mittag.

Außerdem fanden die Forscher, dass die Modifikationen sogenannter Rhodopsine im Augenfleck der Algen konserviert sind. Diese Moleküle sind als Lichtrezeptoren auch in den Augen von Wirbeltieren mit diesen Modifikationen zu finden. "Das lässt darauf schließen, dass der Lichtsignalweg bei den Grünalgen und Wirbeltieren nach ähnlichen Mechanismen gesteuert wird", macht Prof. Mittag deutlich. Auch hinsichtlich der übrigen Eiweiße unterscheidet sich der Augenfleck deutlich von den übrigen Zellstrukturen der Algen. So finden sich viele Eiweiß-Bausteine, die wasserabweisende Eigenschaften besitzen.

"Das ist nicht nur wichtiges Grundlagenwissen für uns Botaniker", ordnet Prof. Mittag die aktuellen Forschungsergebnisse ein. "Vielmehr lassen sich daran auch entwicklungsbiologische Prozesse ableiten, etwa wie das Auge höher entwickelter Organismen entstanden ist." Selbst therapeutische Anwendungen seien eines Tages denkbar. Versuche aus anderen Labors, ein Algen-Rhodopsin in andere Organismen zu übertragen, zeigten bereits Erfolge. So kann dieses Eiweiß Nervenzellen in damit behandelten Fadenwürmern stimulieren und bei diesen Lichtreaktionen auslösen bzw. bei blinden Mäusen partielles Sehen vermitteln.

Für ihre Forschung nutzten die Jenaer Botaniker eine Massenspektrometrie-Anlage im Wert von einer halben Million Euro. Die Deutsche Forschungsgemeinschaft (DFG) hat diese Anlage im Rahmen der Förderung einer deutschlandweiten Forschergruppe zu Chlamydomonas reinhardtii finanziert. Seit 2003 koordiniert Prof. Mittag diese Gruppe, die den Organismus intensiv untersucht. Wissenschaftler der DFG-Forschergruppe haben sich auch am internationalen Einsatz zur Annotierung des Genoms von Chlamydomonas reinhardtii beteiligt, das 2007 im renommierten Journal "Science" veröffentlicht worden ist.

Kontakt:
Prof. Dr. Maria Mittag
Institut für Allgemeine Botanik und Pflanzenphysiologie der Friedrich-Schiller-Universität Jena
Am Planetarium 1, 07743 Jena
Tel.: 03641 / 949200
E-Mail: M.Mittag[at]uni-jena.de

Dr. Ute Schönfelder | idw
Weitere Informationen:
http://www.uni-jena.de

Weitere Berichte zu: Alge Augenfleck Eiweiß Modifikationen Organismus

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Auflösen von Proteinstau am Eingang von Mitochondrien
23.05.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Fossiles Zooplankton zeigt, dass marine Ökosysteme im Anthropozän angekommen sind
23.05.2019 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Geometrie eines Elektrons erstmals bestimmt

Physiker der Universität Basel können erstmals zeigen, wie ein einzelnes Elektron in einem künstlichen Atom aussieht. Mithilfe einer neu entwickelten Methode sind sie in der Lage, die Aufenthaltswahrscheinlichkeit eines Elektrons im Raum darzustellen. Dadurch lässt sich die Kontrolle von Elektronenspins verbessern, die als kleinste Informationseinheit eines zukünftigen Quantencomputers dienen könnten. Die Experimente wurden in «Physical Review Letters» und die Theorie dazu in «Physical Review B» veröffentlicht.

Der Spin eines Elektrons ist ein vielversprechender Kandidat, um als kleinste Informationseinheit (Qubit) eines Quantencomputers genutzt zu werden. Diesen Spin...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Optische Superlinsen aus Gold

Oldenburger Forscher entwickeln neues optisches Mikroskop mit extrem hoher Auflösung

Eine kegelförmige Spitze aus Gold bildet das Kernstück eines neuen, extrem leistungsfähigen optischen Mikroskops, das Oldenburger Wissenschaftler in der...

Im Focus: Impfen über die Haut – Gezielter Wirkstofftransport mit Hilfe von Nanopartikeln

Forschenden am Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Potsdam ist es gelungen Nanopartikel so weiterzuentwickeln, dass sie von speziellen Zellen der menschlichen Haut aufgenommen werden können. Diese sogenannten Langerhans Zellen koordinieren die Immunantwort und alarmieren den Körper, wenn Erreger oder Tumore im Organismus auftreten. Mit dieser neuen Technologieplattform könnten nun gezielt Wirkstoffe, zum Beispiel Impfstoffe oder Medikamente, in Langerhans Zellen eingebracht werden, um eine kontrollierte Immunantwort zu erreichen.

Die Haut ist ein besonders attraktiver Ort für die Applikation vieler Medikamente, die das Immunsystem beeinflussen. Die geeigneten Zielzellen liegen in der...

Im Focus: Chaperone halten das Tumorsuppressor-Protein p53 in Schach: Komplexer Regelkreis schützt vor Krebs

Über Leben und Tod einer Zelle entscheidet das Anti-Tumor-Protein p53: Erkennt es Schäden im Erbgut, treibt es die Zelle in den Selbstmord. Eine neue Forschungsarbeit an der Technischen Universität München (TUM) zeigt, dass diese körpereigene Krebsabwehr nur funktioniert, wenn bestimmte Proteine, die Chaperone, dies zulassen.

Eine Krebstherapie ohne Nebenwirkungen, die gezielt nur Tumorzellen angreift – noch können Ärzte und Patienten davon nur träumen. Dabei hat die Natur ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Früherkennung 2.0: Mit Präzisionsmedizin Screeningverfahren weiterentwickeln

23.05.2019 | Veranstaltungen

Kindermediziner tagen in Leipzig

22.05.2019 | Veranstaltungen

Jubiläumskongress zur Radiologie der Zukunft

22.05.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer Schub für ToCoTronics

23.05.2019 | Physik Astronomie

MiLiQuant: Quantentechnologie nutzbar machen

23.05.2019 | Physik Astronomie

Erfolgreiche Forschung zur Ausbreitung von Wellen

23.05.2019 | Interdisziplinäre Forschung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics