Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wo und wie beginnt die Übersetzung des genetischen Codes?

07.01.2008
Neuer Mechanismus der Translationsinitiation auf der mRNA von Archaea entdeckt - bei der Mehrzahl der in salzreichen Umgebungen lebenden Arten fehlen nicht kodierende Bereiche (UTRs) vor einer Protein kodierenden Sequenz

Wie der genetische Code der Lebewesen in Proteine übersetzt wird, wie also die so genannte Translation funktioniert, das glaubte man seit Jahren perfekt verstanden zu haben. Doch der Teufel steckt im Detail, fand jetzt die Arbeitsgruppe um den Frankfurter Genetiker Prof. Jörg Soppa heraus.

An Archaea, die neben den zellkernlosen Bakterien und zellkerntragenden Organismen wie Tieren, Pilzen und Pflanzen (Eucaryota) die dritte Klasse von Lebewesen bilden, fanden die Forscher eine neue Art der so genannten Translationsinitiation. Hinter diesem Begriff verbirgt sich der Mechanismus, der einem Ribosom anzeigt, an welcher Stelle der Code für eine Proteinsequenz auf der mRNA beginnt. Ribosome sind Makromoleküle, die in den Zellen die Funktion der Proteinfabriken übernehmen, die mRNA (Boten-Ribonukleinsäure oder messenger-RNA) übermittelt ihnen die in der DNA gespeicherte genetische Information zur weiteren Verarbeitung.

"Es war vollkommen unerwartet, bei einer so zentralen Funktion der Zelle wie der Translation, die seit Jahrzehnten untersucht wird, auf einen neuen Mechanismus zu stoßen", erklärt Soppa, dessen Ergebnisse in der angesehenen Zeitschrift PLoS Genetics veröffentlicht wurden.

... mehr zu:
»Archaea »Bakterien »Code »Protein »Ribosom »Translation

Um die in der DNA eines Lebewesens gespeicherte Information in reale Protein-Strukturen umsetzen zu können, muss die DNA zunächst in Boten-Ribonukleinsäuren (mRNAs) übersetzt werden (Transkription). In einem zweiten Schritt, der Translation, stellen dann die Ribosomen Proteine gemäß der Informationen der mRNAs her. Bisher war man davon ausgegangen, dass die Translationsinitiation bei Archaea ähnlich abläuft wie bei ?normalen? Bakterien. Dort können mRNAs mehrere für Proteine kodierende Bereiche enthalten, die jeweils durch nichtkodierende Bereiche getrennt sind. Die Information, wo die Übersetzung einer mRNA in ein Protein jeweils starten soll, ist im davor liegenden UTR (einem nicht kodierenden Bereich) lokalisiert.

Etwa drei bis zehn Nukleotide vor dem Translationsstart liegt ein nach seinen Entdeckern Shine-Dalgarno-Sequenz genanntes Motiv, das mit dem Ribosom wechselwirkt und dieses für den Beginn der Translation positioniert. Bislang wurde angenommen, dass die Shine-Dalgarno-Sequenz für die Translationsinitiation bei fast allen prokaryontischen mRNAs essentiell ist. Als Ausnahmen waren nur mRNAs bekannt, die keine 5'-UTR enthalten. Der Mechanismus der Translationsinitiation an solchen mRNAs ist bislang nur wenig untersucht worden, er unterscheidet sich allerdings deutlich von dem Mechanismus der Initiation an normalen, 5'-UTR-haltigen mRNAs.

Soppas Charakterisierung von 40 mRNAs von Archaea hat nun ergeben, dass die Mehrzahl von ihnen keine 5'-UTR enthält. Untersucht wurden zwei Arten halophiler Archaea, die salzreiche Umgebungen bevorzugen. Zumindest bei ihnen bildet der Mechanismus der Translationsregulation, der bei Bakterien als Ausnahme betrachtet wird, den Regelfall. Noch überraschender war jedoch, dass die mRNAs mit 5'-UTR keine Shine-Dalgarno Sequenz enthielten. In einer bioinformatischen Analyse wurde gezeigt, dass dies für das gesamte Genom zutrifft und die Anwesenheit einer Shine-Dalgarno Sequenz vor einem kodierenden Bereich bei den untersuchten Arten eine Seltenheit ist. An einigen Beispielen wurde außerdem bewiesen, dass die 5'-UTRs ohne Shine-Dalgarno-Sequenz trotzdem in der Zelle effizient ?übersetzt? werden. Die Forschungen der nächsten Jahre sollen zeigen, wie dieser neue Mechanismus funktioniert, welche Komponenten beteiligt sind, und wie weit verbreitet er in anderen Archaea oder auch in Bakterien ist.

Artikel im Internet:
http://genetics.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pgen.0030229
Informationen: Prof. Jörg Soppa, Institut für Molekulare Biowissenschaften, Campus Niederrad, Max-von-Laue-Str. 9,

60438 Frankfurt. Tel: (069) 798-29564, Soppa@bio.uni-frankfurt.de

Dr. Anne Hardy | idw
Weitere Informationen:
http://www.uni-frankfurt.de
http://genetics.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pgen.0030229

Weitere Berichte zu: Archaea Bakterien Code Protein Ribosom Translation

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kühlen nach Art der Pflanzen
18.04.2019 | Westfälische Hochschule

nachricht Kontaktlinsen mit Medizin und Zucker
17.04.2019 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Neues „Baustein-Konzept“ für die additive Fertigung

Volkswagenstiftung fördert Wissenschaftler aus dem IPF Dresden bei der Erkundung eines innovativen neuen Ansatzes im 3D-Druck

Im Rahmen Ihrer Initiative „Experiment! - Auf der Suche nach gewagten Forschungsideen“
fördert die VolkswagenStiftung ein Projekt, das von Herrn Dr. Julian...

Im Focus: Vergangenheit trifft Zukunft

autartec®-Haus am Fuß der F60 fertiggestellt

Der Hafen des Bergheider Sees beherbergt seinen ersten Bewohner. Das schwimmende autartec®-Haus – entstanden im Rahmen eines vom Bundesministerium für Bildung...

Im Focus: Hybrid-Neuronen-Netzwerke mit 3D-Lithografie möglich

Netzwerken aus wenigen Neuronenzellen können gezielt künstliche dreidimensionale Strukturen vorgegeben werden. Sie werden dafür elektronisch verschaltet. Dies eröffnet neue Möglichkeiten, Fehler in neuralen Netzwerken besser zu verstehen und technische Anwendungen mit lebenden Zellen gezielter zu steuern. Dies stellt ein Team aus Forschenden aus Greifswald und Hamburg in einer Publikation in der Fachzeitschrift „Advanced Biosystems“ vor.

Eine der zentralen Fragen der Lebenswissenschaften ist, die Funktionsweise des Gehirns zu verstehen. Komplexe Abläufe im Gehirn ermöglichen uns, schnell Muster...

Im Focus: Was geschieht im Körper von ALS-Patienten?

Wissenschaftler der TU Dresden finden Wege, um das Absterben von Nervenzellen zu verringern und erforschen Therapieansätze zur Behandlung von ALS

Die Amyotrophe Lateralsklerose (ALS) ist eine unheilbare Erkrankung des zentralen Nervensystems. Nicht selten verläuft ALS nach der Diagnose innerhalb...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Künstliche Intelligenz: Lernen von der Natur

17.04.2019 | Veranstaltungen

Mobilität im Umbruch – Conference on Future Automotive Technology, 7.-8. Mai 2019, Fürstenfeldbruck

17.04.2019 | Veranstaltungen

Augmented Reality und Softwareentwicklung: 33. Industrie-Tag InformationsTechnologie (IT)²

17.04.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Irdischer Schutz für außerirdisches Metall

18.04.2019 | Verfahrenstechnologie

Erster astrophysikalischer Nachweis des Heliumhydrid-Ions

18.04.2019 | Physik Astronomie

Radioteleskop LOFAR blickt tief in den Blitz

18.04.2019 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics