Molekulare Maschinen bei der Arbeit beobachtet

In unserem Körper laufen ununterbrochen zahllose Prozesse ab, die für das Leben unabdingbar sind, etwa das Ablesen der genetischen Information, kodiert in der Basensequenz der Desoxyribonukleinsäure (DNA). Diese Prozesse benötigen Energie und werden durch Proteine ausgeführt – so genannte molekulare Maschinen. Diese spalten den universellen Energieträger der Zelle, das Adenosintriphosphat (ATP).

Die daraus gewonnene Energie können sie einsetzen, um die Struktur anderer Moleküle zu ändern. So verwenden beispielsweise Helikasen die Energie der ATP-Hydrolyse, um die Doppelhelix-Struktur der DNA und der RNA zu entwinden. Helikasen sind essenziell für das Kopieren und Ablesen der Erbinformation, für deren Umsetzung sowie für die Ausbildung der funktionalen Struktur von RNA-Molekülen. Helikase-Defekte führen im Allgemeinen zu komplexen Krankheitsbildern.

Die Bestimmung der dreidimensionalen Struktur unterschiedlicher Helikasen hat gezeigt, dass diese aus zwei globulären (kugelförmigen) Einheiten bestehen, die durch einen Spalt getrennt sind. Es ist aber bisher unklar, wie die Helikasen die Energie der ATP-Hydrolyse in Strukturänderungen der Nukleinsäuren umsetzen können. Mit der Methode des so genannten Fluoreszenz-Resonanz-Energie-Transfers ist es möglich, Abstände zwischen zwei Markern auf der Nanometerskala, also innerhalb einzelner Helikase-Moleküle, zu bestimmen. Werden Abstände zwischen mehreren Punkten bestimmt, können Rückschlüsse auf die Form der Helikase gezogen werden.

Die Forschungsgruppe um Prof. Dagmar Klostermeier konnte so zeigen, dass eine bakterielle RNA-Helikase normalerweise eine offene Form einnimmt, in der der Spalt zwischen den globulären Einheiten geöffnet ist. Erst wenn die Helikase gleichzeitig mit ihrem Zielmolekül, der RNA, und der Energiequelle, dem ATP, in Wechselwirkung steht, schliesst sich dieser Spalt, und die Helikase nimmt eine kompakte, geschlossene Konformation ein. Als Folge dieser ATP-induzierten Konformationsänderung der Helikase wird die Doppelhelix-Struktur der RNA verzerrt und ihre Entwindung eingeleitet. Die Spaltung des ATP durch die Helikase überführt diese wiederum in die offene Form. Mehrere Zyklen von ATP-induziertem Öffnen und Schliessen der Helikase führen so zur Entwindung der RNA.

Durch zeitabhängiges Verfolgen des Abstands zwischen zwei Referenzpunkten auf beiden Seiten des Spalts ist es den Forschenden am Biozentrum gelungen, das Öffnen und Schliessen der Helikase während der RNA-Entwindung in Echtzeit zu verfolgen. Damit ist es nun möglich, diesen molekularen Maschinen bei der Arbeit zuzusehen und so die Rolle ihrer Bewegungen für die Funktion zu entschlüsseln.

Weitere Auskünfte:
Prof. Dagmar Klostermeier, Biozentrum der Universität Basel, Abteilung Biophysikalische Chemie, Tel. +41 61 267 23 81, E-Mail: Dagmar.Klostermeier@unibas.ch

Media Contact

Christoph Dieffenbacher idw

Weitere Informationen:

http://www.unibas.ch

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nanofasern befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Wenn Immunzellen den Körper bewegungsunfähig machen

Weltweit erste Therapie der systemischen Sklerose mit einer onkologischen Immuntherapie am LMU Klinikum München. Es ist ein durchaus spektakulärer Fall: Nach einem mehrwöchigen Behandlungszyklus mit einem immuntherapeutischen Krebsmedikament hat ein…

Partner & Förderer