Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulare Maschinen bei der Arbeit beobachtet

07.01.2008
Molekulare Maschinen sind die Hauptakteure bei der Umsetzung lebenswichtiger Prozesse in unserem Körper. Durch die Spaltung des Moleküls ATP gewinnen sie Energie und setzen diese gezielt für komplexe Prozesse ein. Forschenden am Biozentrum der Universität Basel ist es nun gelungen, eine solche molekulare Maschine - eine RNA-Helikase - bei der Arbeit zu beobachten.

In unserem Körper laufen ununterbrochen zahllose Prozesse ab, die für das Leben unabdingbar sind, etwa das Ablesen der genetischen Information, kodiert in der Basensequenz der Desoxyribonukleinsäure (DNA). Diese Prozesse benötigen Energie und werden durch Proteine ausgeführt - so genannte molekulare Maschinen. Diese spalten den universellen Energieträger der Zelle, das Adenosintriphosphat (ATP).

Die daraus gewonnene Energie können sie einsetzen, um die Struktur anderer Moleküle zu ändern. So verwenden beispielsweise Helikasen die Energie der ATP-Hydrolyse, um die Doppelhelix-Struktur der DNA und der RNA zu entwinden. Helikasen sind essenziell für das Kopieren und Ablesen der Erbinformation, für deren Umsetzung sowie für die Ausbildung der funktionalen Struktur von RNA-Molekülen. Helikase-Defekte führen im Allgemeinen zu komplexen Krankheitsbildern.

Die Bestimmung der dreidimensionalen Struktur unterschiedlicher Helikasen hat gezeigt, dass diese aus zwei globulären (kugelförmigen) Einheiten bestehen, die durch einen Spalt getrennt sind. Es ist aber bisher unklar, wie die Helikasen die Energie der ATP-Hydrolyse in Strukturänderungen der Nukleinsäuren umsetzen können. Mit der Methode des so genannten Fluoreszenz-Resonanz-Energie-Transfers ist es möglich, Abstände zwischen zwei Markern auf der Nanometerskala, also innerhalb einzelner Helikase-Moleküle, zu bestimmen. Werden Abstände zwischen mehreren Punkten bestimmt, können Rückschlüsse auf die Form der Helikase gezogen werden.

... mehr zu:
»ATP »Biozentrum »Helikase »RNA

Die Forschungsgruppe um Prof. Dagmar Klostermeier konnte so zeigen, dass eine bakterielle RNA-Helikase normalerweise eine offene Form einnimmt, in der der Spalt zwischen den globulären Einheiten geöffnet ist. Erst wenn die Helikase gleichzeitig mit ihrem Zielmolekül, der RNA, und der Energiequelle, dem ATP, in Wechselwirkung steht, schliesst sich dieser Spalt, und die Helikase nimmt eine kompakte, geschlossene Konformation ein. Als Folge dieser ATP-induzierten Konformationsänderung der Helikase wird die Doppelhelix-Struktur der RNA verzerrt und ihre Entwindung eingeleitet. Die Spaltung des ATP durch die Helikase überführt diese wiederum in die offene Form. Mehrere Zyklen von ATP-induziertem Öffnen und Schliessen der Helikase führen so zur Entwindung der RNA.

Durch zeitabhängiges Verfolgen des Abstands zwischen zwei Referenzpunkten auf beiden Seiten des Spalts ist es den Forschenden am Biozentrum gelungen, das Öffnen und Schliessen der Helikase während der RNA-Entwindung in Echtzeit zu verfolgen. Damit ist es nun möglich, diesen molekularen Maschinen bei der Arbeit zuzusehen und so die Rolle ihrer Bewegungen für die Funktion zu entschlüsseln.

Weitere Auskünfte:
Prof. Dagmar Klostermeier, Biozentrum der Universität Basel, Abteilung Biophysikalische Chemie, Tel. +41 61 267 23 81, E-Mail: Dagmar.Klostermeier@unibas.ch

Christoph Dieffenbacher | idw
Weitere Informationen:
http://www.unibas.ch

Weitere Berichte zu: ATP Biozentrum Helikase RNA

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Chemiker lassen Bor-Atome wandern
17.01.2020 | Westfälische Wilhelms-Universität Münster

nachricht Infektiöse Proteine bei Alzheimer
17.01.2020 | Klinikum der Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Miniatur-Doppelverglasung: Wärmeisolierendes und gleichzeitig wärmeleitendes Material entwickelt

Styropor oder Kupfer – beide Materialien weisen stark unterschiedliche Eigenschaften auf, was ihre Fähigkeit betrifft, Wärme zu leiten. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz und der Universität Bayreuth haben nun gemeinsam ein neuartiges, extrem dünnes und transparentes Material entwickelt und charakterisiert, welches richtungsabhängig unterschiedliche Wärmeleiteigenschaften aufweist. Während es in einer Richtung extrem gut Wärme leiten kann, zeigt es in der anderen Richtung gute Wärmeisolation.

Wärmeisolation und Wärmeleitung spielen in unserem Alltag eine entscheidende Rolle – angefangen von Computerprozessoren, bei denen es wichtig ist, Wärme...

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF errichtet ein Applikationslabor für Quantensensorik

Um den Transfer von Forschungsentwicklungen aus dem Bereich der Quantensensorik in industrielle Anwendungen voranzubringen, entsteht am Fraunhofer IAF ein Applikationslabor. Damit sollen interessierte Unternehmen und insbesondere regionale KMU sowie Start-ups die Möglichkeit erhalten, das Innovationspotenzial von Quantensensoren für ihre spezifischen Anforderungen zu evaluieren. Sowohl das Land Baden-Württemberg als auch die Fraunhofer-Gesellschaft fördern das auf vier Jahre angelegte Vorhaben mit jeweils einer Million Euro.

Das Applikationslabor wird im Rahmen des Fraunhofer-Leitprojekts »QMag«, kurz für Quantenmagnetometrie, errichtet. In dem Projekt entwickeln Forschende von...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: Wie Zellen ihr Skelett bilden

Wissenschaftler erforschen die Entstehung sogenannter Mikrotubuli

Zellen benötigen für viele wichtige Prozesse wie Zellteilung und zelluläre Transportvorgänge strukturgebende Filamente, sogenannte Mikrotubuli.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

11. Tagung Kraftwerk Batterie - Advanced Battery Power Conference am 24-25. März 2020 in Münster/Germany

16.01.2020 | Veranstaltungen

Leben auf dem Mars: Woher kommt das Methan?

16.01.2020 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2020

16.01.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Chemiker lassen Bor-Atome wandern

17.01.2020 | Biowissenschaften Chemie

Infektiöse Proteine bei Alzheimer

17.01.2020 | Biowissenschaften Chemie

Miniatur-Doppelverglasung: Wärmeisolierendes und gleichzeitig wärmeleitendes Material entwickelt

17.01.2020 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics