Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tumorzellen zum Schweigen bringen

04.01.2008
Forscher des Plazenta-Labors der Universität Jena entwickeln neue Technologie zur Krebstherapie / Bundesministerium für Wirtschaft gewährt EXIST-Gründerstipendium von 100.000 Euro

Die Idee ist im Grunde ganz einfach: Ein Medikament gelangt in Form einer Spritze in den Körper und wandert anschließend in genau die Körperzellen, in denen es wirken soll - Nebenwirkungen praktisch ausgeschlossen. "Auf diese Weise könnten beispielsweise aggressive Wirkstoffe gegen Tumoren verabreicht werden, die gezielt die Krebszellen abtöten, anderen Körperzellen aber keinen Schaden zufügen", sagt Dr. Tobias Pöhlmann von der Friedrich-Schiller-Universität Jena. Doch wie so oft lasse sich, was so einfach klingt, in der Praxis nur langsam umsetzen, räumt der Biologe vom Plazenta-Labor des Universitätsklinikums Jena ein.

Pöhlmann und seine Kollegen sind dabei nun aber einen wichtigen Schritt weiter. Sie haben ein Verfahren entwickelt und patentieren lassen, das es erlaubt, jede beliebige Art von Körperzellen zielgenau anzusteuern und deren Stoffwechsel zu beeinflussen. Der Trick dabei: Die verabreichten Substanzen wandern zwar unspezifisch in jede Zelle, werden aber nur in ganz bestimmten Zellen aktiviert und entfalten ihre Wirkung nur dort. Die Forscher des Plazenta-Labors, das zur Abteilung für Geburtshilfe der Jenaer Universitätsfrauenklinik gehört, nutzen dazu spezielle Ribonukleinsäuren (RNA).

Diese "small interfering RNA"-Moleküle (engl.: kleine, interferierende RNA) werden dazu benutzt, bestimmte Gene "zum Schweigen zu bringen" ("RNA-Silencing"). "Damit wären siRNA-Moleküle prinzipiell gut geeignet, Tumorzellen abzutöten - indem man mit ihrer Hilfe einfach überlebenswichtige Gene in den Krebszellen ausschaltet", erläutert Dr. Pöhlmann das Prinzip. Das Problem bisher: "siRNA wirkt nicht nur spezifisch in den Tumor- sondern prinzipiell in jeder anderen Körperzelle auch", verdeutlicht der Biologe, was eine Anwendung der siRNAs in der Humanmedizin bisher verhindert.

Pöhlmann und seinem Team ist es nun gelungen, die siRNA-Moleküle mit einem speziellen "Schloss" auszustatten, dessen "Schlüssel" sich nur in den gewünschten Zielzellen befindet. Die siRNA wird also nur in den gewünschten Zellen aktiviert. Ihre "intelligenten siRNA-Moleküle" wollen die Wissenschaftler der Jenaer Universität nun bis zur Marktreife weiterentwickeln und eine Firma - die Science and MedService GmbH - aus der Universität ausgründen. Neben Dr. Pöhlmann und seinen Kollegen PD Dr. Udo Markert, Dr. Lydia Seyfarth und Dr. Diana Imhof sind an dem Projekt die Chemikerin Sandra Köhn, die Mediengestalterin Bettina Ruhland und der Wirtschaftswissenschaftler Werner Dörrzapf beteiligt.

Unterstützt werden die Existenzgründer dabei vom Servicezentrum Forschung und Transfer der Jenaer Universität, mit dem sie erfolgreich ein EXIST-Gründerstipendium des Bundesministeriums für Wirtschaft beantragt haben. Zu Jahresbeginn startete die Förderung, durch die 2008 knapp 100.000 Euro in das Gründungsvorhaben fließen. Doch das "Starthilfe-Paket" der Uni Jena umfasst noch mehr. Die Universität stellt den Gründern Arbeitsplätze zur Verfügung und gestattet ihnen die Nutzung von Laboren und der Infrastruktur der Universität. Zurzeit werden speziell für Gründer mehrere Büroräume und ein Besprechungsraum mit Präsentationstechnik hergerichtet.

"Im Rahmen des jährlich stattfindenden Gründerseminars der Wirtschaftswissenschaftlichen Fakultät profitieren die Forscher um Dr. Pöhlmann zusätzlich vom Know-how an der Universität", erläutert Ralf Schindek. "In dem Seminar wird gemeinsam mit Wirtschaftsstudenten ein Businessplan erstellt, der sich anschließend umsetzen lässt", so der Mitarbeiter im Servicezentrum Forschung und Transfer, der für die Betreuung von Existenzgründern zuständig ist.

Erste wissenschaftliche und wirtschaftliche Kontakte haben die Unternehmensgründer aus dem Plazenta-Labor im vergangenen Jahr bereits auf den Messen "Biotechnica" und "Medica" geknüpft. Doch auch darüber hinaus suchen sie Mitstreiter. "Zum einen wollen wir universitäre Partner gewinnen, um unsere Technologie für ein möglichst breites Feld von Anwendungen zu nutzen", so Dr. Pöhlmann. Zum anderen gehe es im kommenden Jahr vor allem darum, Investoren und Sponsoren zu akquirieren, um die Unternehmensgründung voranzutreiben.

Kontakt:
Dr. Tobias Pöhlmann
Plazenta-Labor der Abteilung für Geburtshilfe des Universitätsklinikums Jena
Bachstraße 18, 07743 Jena
Tel.: 03641 / 934244
E-Mail: tobias.poehlmann[at]med.uni-jena.de
Ralf Schindek
Servicezentrum Forschung und Transfer der Friedrich-Schiller-Universität Jena
Fürstengraben 1, 07743 Jena
Tel.: 03641 / 931078
E-Mail: ralf.schindek[at]uni-jena.de

Dr. Ute Schönfelder | idw
Weitere Informationen:
http://www.placenta-labor.de
http://www.gruenderservice.uni-jena.de
http://www.uni-jena.de

Weitere Berichte zu: Geburtshilfe Körperzelle Plazenta-Labor Tumorzelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Antibiotika: Neuer Wirkstoff wirkt auch bei resistenten Bakterien
11.11.2019 | Martin-Luther-Universität Halle-Wittenberg

nachricht Kleine RNAs verbinden Immunsystem und Gehirnzellen
11.11.2019 | Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetisches Tuning auf der Nanoskala

Magnetische Nanostrukturen maßgeschneidert herzustellen und nanomagnetische Materialeigenschaften gezielt zu beeinflussen, daran arbeiten Physiker des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) gemeinsam mit Kollegen des Leibniz-Instituts für Festkörper- und Werkstoffforschung (IFW) Dresden und der Universität Glasgow. Zum Einsatz kommt ein spezielles Mikroskop am Ionenstrahlzentrum des HZDR, dessen hauchdünner Strahl aus schnellen geladenen Atomen (Ionen) periodisch angeordnete und stabile Nanomagnete in einem Probenmaterial erzeugen kann. Es dient aber auch dazu, die magnetischen Eigenschaften von Kohlenstoff-Nanoröhrchen zu optimieren.

„Materialien im Nanometerbereich magnetisch zu tunen birgt ein großes Potenzial für die Herstellung modernster elektronischer Bauteile. Für unsere magnetischen...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: REANIMA - für ein neues Paradigma der Herzregeneration

Endogene Mechanismen der Geweberegeneration sind ein innovativer Forschungsansatz, um Herzmuskelschäden zu begegnen. Ihnen widmet sich das internationale REANIMA-Projekt, an dem zwölf europäische Forschungszentren beteiligt sind. Das am CNIC (Centro Nacional de Investigaciones Cardiovasculares) in Madrid koordinierte Projekt startet im Januar 2020 und wird von der Europäischen Kommission mit 8 Millionen Euro über fünf Jahre gefördert.

Herz-Kreislauf-Erkrankungen verursachen weltweit die meisten Todesfälle. Herzinsuffizienz ist geradezu eine Epidemie, die neben der persönlichen Belastung mit...

Im Focus: Göttinger Chemiker weisen kleinstmögliche Eiskristalle nach

Temperaturabhängig gefriert Wasser zu Eis und umgekehrt. Dieser Vorgang, in der Wissenschaft als Phasenübergang bezeichnet, ist im Alltag gut bekannt. Um aber ein stabiles Gitter für Eiskristalle zu erreichen, ist eine Mindestanzahl an Molekülen nötig, ansonsten ist das Konstrukt instabil. Bisher konnte dieser Wert nur grob geschätzt werden. Einem deutsch-amerikanischen Forschungsteam unter Leitung des Chemikers Prof. Dr. Thomas Zeuch vom Institut für Physikalische Chemie der Universität Göttingen ist es nun gelungen, die Größe kleinstmöglicher Eiskristalle genau zu bestimmen. Die Forschungsergebnisse sind in der Fachzeitschrift Proceedings of the National Academy of Science erschienen.

Knapp 100 Wassermoleküle sind nötig, um einen Eiskristall in seiner kleinstmöglichen Ausprägung zu formen. Nachweisen konnten die Wissenschaftler zudem, dass...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Mediation – Konflikte konstruktiv lösen

12.11.2019 | Veranstaltungen

Hochleistungsmaterialien mit neuen Eigenschaften im Fokus von Partnern aus Wissenschaft und Wirtschaft

11.11.2019 | Veranstaltungen

Weniger Lärm in Innenstädten durch neue Gebäudekonzepte

08.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Selbstorganisation weicher Materie im Detail verstehen

12.11.2019 | Physik Astronomie

Magnetisches Tuning auf der Nanoskala

12.11.2019 | Physik Astronomie

»KaSiLi«: Bessere Batterien für Elektroautos »Made in Germany«

12.11.2019 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics