Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pfad der RNA enthüllt - Satelliten-Navigation für Biomoleküle

31.12.2007
Das Entstehen einzelner RNA-Moleküle zu beobachten - diesen von vielen Wissenschaftlern gehegten Traum hat sich ein Team aus Chemikern und Biochemikern um Professor Jens Michaelis und Professor Patrick Cramer an der Ludwig-Maximilians-Universität (LMU) München erfüllt.

Im Rahmen des Exzellenzclusters Nanosystems Initiative Munich (NIM) haben sie eine Methode entwickelt, mit der sich die Moleküle an der Spitze der RNA beim Transkriptionsprozess nanometergenau verfolgen lassen.

Bei dem in der aktuellen Ausgabe der Fachzeitschrift "Proceedings of the National Academy of Sciences" (PNAS) vorgestellten Verfahren wird unter Ausnutzung des Energieübertrags zwischen Fluoreszenzfarbstoffen die Distanz des RNA-Moleküls zu mindestens drei fest verorteten Molekülen gemessen und daraus wie bei der Satelliten-Navigation die Position des RNA-Moleküls bestimmt. Diese Beobachtungsmöglichkeit bietet eine wichtige Grundlage für das Verständnis von Mechanismen der Genregulation.

Damit eine Zelle neue Proteine erzeugen kann, holt sie sich den Bauplan für die neuen Eiweißstrukturen aus der DNA. Dabei werden die erforderlichen Gensequenzen der DNA zunächst auf eine Boten-RNA kopiert, auf Englisch "messenger-RNA", kurz mRNA. Der Kopiervorgang von der DNA zur mRNA geschieht in einem darauf spezialisierten Protein, der RNA-Polymerase. Die kann man sich als winzigen Kopierautomaten vorstellen. An einem Ende wird die DNA eingeschleust, am anderen Ende kommen DNA und mRNA heraus. Die Produktion der gewünschten und von der DNA vorgegebenen Zellbausteine geschieht im Anschluss.

Dieser Ablauf ist schon recht lange bekannt. Um aber genau nachvollziehen zu können, wie die RNA nach dem Verlassen der Polymerase weiterbehandelt wird, muss man wissen, auf welchem Weg die RNA aus der Polymerase herauskommt. Mit den bisher angewandten Messmethoden, etwa der Röntgenstrukturanalyse, lässt sich zwar gut der Weg der RNA im Polymerase-Molekül verfolgen. Sobald die RNA aber die Polymerase verlassen hat, versagt die Methode, weil sich die RNA-Moleküle dann flexibel zwischen mehreren Positionen hin und her bewegen können. Eine solche Dynamik lässt sich mit der Röntgenstrukturanalyse nicht abbilden. Man bekäme als Messergebnis nur eine ungenau bestimmte mittlere Position.

Einen genaueren Einblick verschafft eine neue Methode, die in den Arbeitsgruppen von Michaelis und Cramer im Center for NanoScience (CeNS) der LMU entwickelt wurde. Grundlage ist die Messung des Fluoreszenz-Resonanz-Energie-Transfers (FRET) mit einem Fluoreszenz-Mikroskop. Dabei überträgt ein angeregtes Fluoreszenzfarbstoffmolekül einen Teil seiner Energie auf ein zweites Farbstoffmolekül. Die übertragene Energie und damit die Intensität des gemessenen FRET-Signals hängt sehr empfindlich vom Abstand der beiden Farbstoffmoleküle ab. So lassen sich Entfernungen im Nanometerbereich bestimmen. Diese Methode kombinierten Michaelis, Cramer und ihre Mitarbeiter mit einem Verfahren, das aus der Satelliten-Navigation (Globales Positionierungs-System GPS) bekannt ist. Um den Ort eines Objekts präzise zu bestimmen, benötigt man nur seine Distanz zu drei bekannten Positionen. So peilt ein GPS-Empfänger in einem Navigationsgerät drei Satelliten an, misst die Distanz zu diesen und errechnet daraus die eigene Position.

Um die Position von RNA-Molekülen zu bestimmen, markierten die Münchener Wissenschaftler zwei bekannte Stellen auf der zu kopierenden DNA und noch zwei weitere Stellen im RNA-Polymerase-Molekül mit unterschiedlichen Fluoreszenz-Farbstoffen, die in Analogie zum GPS als "Satelliten" betrachtet werden können. Ein weiterer Farbstoff kam ans vordere Ende der RNA. Aus den Distanzen der vier Satelliten zum RNA-Molekül konnten sie nun dessen genaue Position ermitteln. "Wir haben so gewissermaßen ein Nano-Positionier-System (NPS) entwickelt und damit für mehrere verschieden lange RNA-Sequenzen deren Lage nach Austritt aus der Polymerase bestimmt", sagt Michaelis. Im Prinzip ist das Farbstoffmolekül auf der RNA also ein Beobachter an der Spitze eines Zuges, an den immer mehr Wagen angehängt werden. Es schaut aus dem Fenster und beobachtet, wie sich seine Umgebung und seine Position verändert, je länger der Zug wird.

Ein erster Schritt ist damit getan. Als Nächstes wollen die Wissenschaftler untersuchen, was passiert, wenn die RNA-Produktion ins Stocken gerät. Dies kann zum Beispiel durch einen Fehler in der abgelesenen DNA verursacht werden. Um die Polymerase-Maschine dann wieder zum Laufen zu bringen, muss dieser Fehler zunächst repariert werden. Aber wie genau funktioniert das? Die Forscher erhoffen sich von ihrer Arbeit weitere Erkenntnisse über diesen Reparaturprozess. Solche Erkenntnisse könnten möglicherweise zur Entwicklung von Behandlungsmethoden für Krankheiten führen, bei denen eine Störung der DNA-Reparatur vorliegt.

Die aktuell in den PNAS vorgestellten Arbeiten entstanden im Rahmen der Exzellenz-Cluster "Nanosystems Initiative Munich" (NIM) und "Center for Integrated Protein Science Munich" (CiPSM). NIM hat es sich zum Ziel gesetzt, funktionale Nanostrukturen für Anwendungen in der Medizin und in der Informationsverarbeitung zu entwickeln, zu erforschen und zum Einsatz zu bringen. Der Schwerpunkt der Forschung in CiPSM zielt auf das fundamentale Verständnis der Funktion von Proteinen in lebenden Systemen.

Publikation:
"Single-molecule tracking of mRNA exiting from RNApolymerase II",
Joanna Andrecka, Robert Lewis, Florian Brueckner, Elisabeth Lehmann, Patrick Cramer and Jens Michaelis, PNAS am 27.12.2007
Ansprechpartner:
Professor Jens Michaelis
Department für Chemie und Biochemie der LMU
Geschäftsführender Direktor, Max-Planck-Institut für Quantenoptik
Tel.: 089 / 2180-77561
Fax: 089 / 2180-99 77561
E-Mail: michaelis@lmu.de
Web: www.cup.uni-muenchen.de/pc/michaelis
Professor Patrick Cramer
Department für Chemie und Biochemie sowie Genzentrum der LMU
Tel.: 089 / 2180-76951
Fax: 089 / 2180-76999
E-Mail: cramer@lmb.uni-muenchen.de
Dr. Peter Sonntag
Nanosystems Initiative Munich (NIM)
Presse- und Öffentlichkeitsarbeit
Tel.: 089 / 2180-5091
Fax: 089 / 2180-5694
E-Mail: peter.sonntag@lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Berichte zu: DNA NIM Polymerase Protein RNA RNA-Molekül Satelliten-Navigation

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zähne wie ein Piranha: Ältester fleischreißender Knochenfisch entdeckt
19.10.2018 | Staatliche Naturwissenschaftliche Sammlungen Bayerns

nachricht Meilenstein für den Denkmalschutz: Chemisches Schutzschild gegen sauren Regen und Bakterien
19.10.2018 | Universität Ulm

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Im Focus: Chemiker der Universitäten Rostock und Yale zeigen erstmals Dreierkette aus gleichgeladenen Ionen

Die Forschungskooperation zwischen der Universität Yale und der Universität Rostock hat neue wissenschaftliche Ergebnisse hervorgebracht. In der renommierten Zeitschrift „Angewandte Chemie“ berichten die Wissenschaftler über eine Dreierkette aus Ionen gleicher Ladung, die durch sogenannte Wasserstoffbrücken zusammengehalten werden. Damit zeigen die Forscher zum ersten Mal eine Dreierkette aus gleichgeladenen Ionen, die sich im Grunde abstoßen.

Die erfolgreiche Zusammenarbeit zwischen den Professoren Mark Johnson, einem weltbekannten Cluster-Forscher, und Ralf Ludwig aus der Physikalischen Chemie der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Natürlich intelligent

19.10.2018 | Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Meilenstein für den Denkmalschutz: Chemisches Schutzschild gegen sauren Regen und Bakterien

19.10.2018 | Biowissenschaften Chemie

Mission BepiColombo: Jenaer Sensor hilft, Geheimnisse des Merkur zu entschlüsseln

19.10.2018 | Physik Astronomie

Zähne wie ein Piranha: Ältester fleischreißender Knochenfisch entdeckt

19.10.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics