Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pfad der RNA enthüllt - Satelliten-Navigation für Biomoleküle

31.12.2007
Das Entstehen einzelner RNA-Moleküle zu beobachten - diesen von vielen Wissenschaftlern gehegten Traum hat sich ein Team aus Chemikern und Biochemikern um Professor Jens Michaelis und Professor Patrick Cramer an der Ludwig-Maximilians-Universität (LMU) München erfüllt.

Im Rahmen des Exzellenzclusters Nanosystems Initiative Munich (NIM) haben sie eine Methode entwickelt, mit der sich die Moleküle an der Spitze der RNA beim Transkriptionsprozess nanometergenau verfolgen lassen.

Bei dem in der aktuellen Ausgabe der Fachzeitschrift "Proceedings of the National Academy of Sciences" (PNAS) vorgestellten Verfahren wird unter Ausnutzung des Energieübertrags zwischen Fluoreszenzfarbstoffen die Distanz des RNA-Moleküls zu mindestens drei fest verorteten Molekülen gemessen und daraus wie bei der Satelliten-Navigation die Position des RNA-Moleküls bestimmt. Diese Beobachtungsmöglichkeit bietet eine wichtige Grundlage für das Verständnis von Mechanismen der Genregulation.

Damit eine Zelle neue Proteine erzeugen kann, holt sie sich den Bauplan für die neuen Eiweißstrukturen aus der DNA. Dabei werden die erforderlichen Gensequenzen der DNA zunächst auf eine Boten-RNA kopiert, auf Englisch "messenger-RNA", kurz mRNA. Der Kopiervorgang von der DNA zur mRNA geschieht in einem darauf spezialisierten Protein, der RNA-Polymerase. Die kann man sich als winzigen Kopierautomaten vorstellen. An einem Ende wird die DNA eingeschleust, am anderen Ende kommen DNA und mRNA heraus. Die Produktion der gewünschten und von der DNA vorgegebenen Zellbausteine geschieht im Anschluss.

Dieser Ablauf ist schon recht lange bekannt. Um aber genau nachvollziehen zu können, wie die RNA nach dem Verlassen der Polymerase weiterbehandelt wird, muss man wissen, auf welchem Weg die RNA aus der Polymerase herauskommt. Mit den bisher angewandten Messmethoden, etwa der Röntgenstrukturanalyse, lässt sich zwar gut der Weg der RNA im Polymerase-Molekül verfolgen. Sobald die RNA aber die Polymerase verlassen hat, versagt die Methode, weil sich die RNA-Moleküle dann flexibel zwischen mehreren Positionen hin und her bewegen können. Eine solche Dynamik lässt sich mit der Röntgenstrukturanalyse nicht abbilden. Man bekäme als Messergebnis nur eine ungenau bestimmte mittlere Position.

Einen genaueren Einblick verschafft eine neue Methode, die in den Arbeitsgruppen von Michaelis und Cramer im Center for NanoScience (CeNS) der LMU entwickelt wurde. Grundlage ist die Messung des Fluoreszenz-Resonanz-Energie-Transfers (FRET) mit einem Fluoreszenz-Mikroskop. Dabei überträgt ein angeregtes Fluoreszenzfarbstoffmolekül einen Teil seiner Energie auf ein zweites Farbstoffmolekül. Die übertragene Energie und damit die Intensität des gemessenen FRET-Signals hängt sehr empfindlich vom Abstand der beiden Farbstoffmoleküle ab. So lassen sich Entfernungen im Nanometerbereich bestimmen. Diese Methode kombinierten Michaelis, Cramer und ihre Mitarbeiter mit einem Verfahren, das aus der Satelliten-Navigation (Globales Positionierungs-System GPS) bekannt ist. Um den Ort eines Objekts präzise zu bestimmen, benötigt man nur seine Distanz zu drei bekannten Positionen. So peilt ein GPS-Empfänger in einem Navigationsgerät drei Satelliten an, misst die Distanz zu diesen und errechnet daraus die eigene Position.

Um die Position von RNA-Molekülen zu bestimmen, markierten die Münchener Wissenschaftler zwei bekannte Stellen auf der zu kopierenden DNA und noch zwei weitere Stellen im RNA-Polymerase-Molekül mit unterschiedlichen Fluoreszenz-Farbstoffen, die in Analogie zum GPS als "Satelliten" betrachtet werden können. Ein weiterer Farbstoff kam ans vordere Ende der RNA. Aus den Distanzen der vier Satelliten zum RNA-Molekül konnten sie nun dessen genaue Position ermitteln. "Wir haben so gewissermaßen ein Nano-Positionier-System (NPS) entwickelt und damit für mehrere verschieden lange RNA-Sequenzen deren Lage nach Austritt aus der Polymerase bestimmt", sagt Michaelis. Im Prinzip ist das Farbstoffmolekül auf der RNA also ein Beobachter an der Spitze eines Zuges, an den immer mehr Wagen angehängt werden. Es schaut aus dem Fenster und beobachtet, wie sich seine Umgebung und seine Position verändert, je länger der Zug wird.

Ein erster Schritt ist damit getan. Als Nächstes wollen die Wissenschaftler untersuchen, was passiert, wenn die RNA-Produktion ins Stocken gerät. Dies kann zum Beispiel durch einen Fehler in der abgelesenen DNA verursacht werden. Um die Polymerase-Maschine dann wieder zum Laufen zu bringen, muss dieser Fehler zunächst repariert werden. Aber wie genau funktioniert das? Die Forscher erhoffen sich von ihrer Arbeit weitere Erkenntnisse über diesen Reparaturprozess. Solche Erkenntnisse könnten möglicherweise zur Entwicklung von Behandlungsmethoden für Krankheiten führen, bei denen eine Störung der DNA-Reparatur vorliegt.

Die aktuell in den PNAS vorgestellten Arbeiten entstanden im Rahmen der Exzellenz-Cluster "Nanosystems Initiative Munich" (NIM) und "Center for Integrated Protein Science Munich" (CiPSM). NIM hat es sich zum Ziel gesetzt, funktionale Nanostrukturen für Anwendungen in der Medizin und in der Informationsverarbeitung zu entwickeln, zu erforschen und zum Einsatz zu bringen. Der Schwerpunkt der Forschung in CiPSM zielt auf das fundamentale Verständnis der Funktion von Proteinen in lebenden Systemen.

Publikation:
"Single-molecule tracking of mRNA exiting from RNApolymerase II",
Joanna Andrecka, Robert Lewis, Florian Brueckner, Elisabeth Lehmann, Patrick Cramer and Jens Michaelis, PNAS am 27.12.2007
Ansprechpartner:
Professor Jens Michaelis
Department für Chemie und Biochemie der LMU
Geschäftsführender Direktor, Max-Planck-Institut für Quantenoptik
Tel.: 089 / 2180-77561
Fax: 089 / 2180-99 77561
E-Mail: michaelis@lmu.de
Web: www.cup.uni-muenchen.de/pc/michaelis
Professor Patrick Cramer
Department für Chemie und Biochemie sowie Genzentrum der LMU
Tel.: 089 / 2180-76951
Fax: 089 / 2180-76999
E-Mail: cramer@lmb.uni-muenchen.de
Dr. Peter Sonntag
Nanosystems Initiative Munich (NIM)
Presse- und Öffentlichkeitsarbeit
Tel.: 089 / 2180-5091
Fax: 089 / 2180-5694
E-Mail: peter.sonntag@lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Berichte zu: DNA NIM Polymerase Protein RNA RNA-Molekül Satelliten-Navigation

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forschende entdecken, wie äußere Reize den Auf- und Abbau des Skeletts im Kern von Säugetierzellen steuern
22.11.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Austernsterben: Amerikanische Pantoffelschnecke ist unschuldig
22.11.2019 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forschende entdecken, wie äußere Reize den Auf- und Abbau des Skeletts im Kern von Säugetierzellen steuern

Nicht nur in Muskelzellen spielen sie die Hauptrolle: Die Aktinfilamente sind eines der häufigsten Proteine in allen Säugetierzellen. Die fadenförmigen Strukturen bilden einen wichtigen Teil des Zellskeletts und -bewegungsapparats. Zellbiologinnen und -biologen der Universität Freiburg zeigen nun in Zellkulturen, wie Rezeptorproteine in der Membran dieser Zellen Signale von außen an Aktinmoleküle im Kern weiterleiten, die daraufhin Fäden bilden.

Das Team um Pharmakologe Prof. Dr. Robert Grosse steuert in einer Studie den Auf- und Abbau der Aktinfilamente im Zellkern mit physiologischen Botenstoffen und...

Im Focus: Neuartiges Antibiotikum gegen Problemkeime in Sicht

Internationales Forscherteam mit Beteiligung der Universität Gießen entdeckt neuen Wirkstoff gegen gramnegative Bakterien – Darobactin attackiert die Erreger an einem bislang unbekannten Wirkort

Immer mehr bakterielle Erreger von Infektionskrankheiten entwickeln Resistenzen gegen die marktüblichen Antibiotika. Typische Krankenhauskeime wie Escherichia...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Kleine Teilchen, große Wirkung: Wie Nanoteilchen aus Graphen die Auflösung von Mikroskopen verbessern

Konventionelle Lichtmikroskope können Strukturen nicht mehr abbilden, wenn diese einen Abstand haben, der kleiner als etwa die Lichtwellenlänge ist. Mit „Super-resolution Microscopy“, entwickelt seit den 80er Jahren, kann man diese Einschränkung jedoch umgehen, indem fluoreszierende Materialien eingesetzt werden. Wissenschaftlerinnen und Wissenschaftler am Max-Planck-Institut für Polymerforschung haben nun entdeckt, dass aus Graphen bestehende Nano-Moleküle genutzt werden können, um diese Mikroskopie-Technik zu verbessern. Diese Nano-Moleküle bieten eine Reihe essentieller Vorteile gegenüber den bisher verwendeten Materialien, die die Mikroskopie-Technik noch vielfältiger einsetzbar machen.

Mikroskopie ist eine wichtige Untersuchungsmethode in der Physik, Biologie, Medizin und vielen anderen Wissenschaften. Sie hat jedoch einen Nachteil: Ihre...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage 2020: „Mach es einfach!“

18.11.2019 | Veranstaltungen

Humanoide Roboter in Aktion erleben

18.11.2019 | Veranstaltungen

1. Internationale Konferenz zu Agrophotovoltaik im August 2020

15.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der Gewinner ist… Vorankündigung zum 11. Corporate Health Award

22.11.2019 | Förderungen Preise

Erste Liga der Automobilzulieferer

22.11.2019 | Förderungen Preise

Forschende entdecken, wie äußere Reize den Auf- und Abbau des Skeletts im Kern von Säugetierzellen steuern

22.11.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics