Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Disko wird zum Menuett - Der Terahertz-Tanz des Wassers mit den Proteinen

18.12.2007
Protein-Einfluss hat eine unvermutet große Reichweite

Es ist besonders die Art der Faltung, die bei Proteinen ihre Funktion bestimmt -ein dynamischer Prozess, der sehr schnell abläuft. Bei der Untersuchung dieses "Tanzes" der Proteine hat man bislang den Partner außer Acht gelassen: das Wasser.

Dieses Zusammenspiel zwischen Wasser und Proteinen haben Forscher aus Bochum, Illinois und Nevada um Prof. Dr. Martina Havenith-Newen (Physikalische Chemie II der RUB) nun mittels Terahertz-Spektroskopie beobachtet. So konnten sie erstmals zeigen, dass Proteine die Bewegungen des umgebenden Wassernetzwerkes über weite Bereiche beeinflussen.

Etwa 1000 Wasser-Moleküle werden durch ein Protein "auf Linie gebracht": Bewegen sie sich ohne Protein so ungeordnet wie eine Gruppe Diskotänzer, so gehen sie in der Nähe eines Proteins eher zu einem Menuetttanz über. Die Forscher berichten über ihre Studie in der aktuellen Ausgabe der Proceedings of the National Academy of Science PNAS.

Tanzpartner vergessen

Der Fokus bei Untersuchungen der Proteinfaltung lag bisher ausschließlich auf den Bewegungen des Proteingerüstes und der Seitenketten. "Man vermutet aber, dass die schnellen Bewegungen des Wassers, insbesondere ihre Kopplung mit der Proteinbewegung, eine wichtige Rolle bei der Proteinfaltung und somit auch -funktion spielen", erklärt Prof. Havenith-Newen. Fundamentale Fragen, die bisher unbeantwortet geblieben sind: Wie weit reicht der Einfluss der Proteine? Ändern sich die schnellen Wasserbewegungen bei Annäherung zweier Proteine?

Absorption der Terahertzstrahlung erlaubt Rückschlüsse

Die Entwicklung von leistungsstarken Laserquellen im Terahertz (THz)-Bereich eröffnen der Forschung nun ganz neue Möglichkeiten: Abhängig von seinem Zustand absorbiert das Wasser die Terahertzstrahlung nämlich auf charakteristische Weise - dadurch werden Rückschlüsse möglich. Ein Beispiel: Während bei 370 Kelvin (97°C) nur 0,7 % der Strahlung (bei einer Frequenz von ca. 1,5 THz) eine 100 Mikrometer dicke Wasserschicht durchdringen, sind es bei 270 Kelvin (-3°C) schon 40 %. Eis ist also wesentlich transparenter für Terahertzstrahlung als Wasser. Der Grund liegt in den winzigen, schnellen Schwingungen, in denen sich Netzwerke aus Wassermolekülen ständig befinden. Sie dauern weniger als eine Picosekunde (eine Billionstelsekunde) und werden bestimmt durch ein Wegstreben der Wassermoleküle voneinander und der Rotationen gegeneinander. Gefrorenes Wasser absorbiert bei einer anderen Frequenz die Strahlung als flüssiges Wasser. Jede Messung im THz Bereich ist daher charakteristisch für den Zustand des Wassers.

Proteine bringen Ordnung ins Wasser

Die Forscher machten sich nun den Umstand zunutze, dass die Schwingungen von Wassernetzwerken sich nicht nur durch die Temperatur ändern, sondern auch durch die Nähe von Proteinen. "Man kann sich das so vorstellen, dass ein Protein die Wassermoleküle in seiner Umgebung in eine gewisse geordnete Bewegung bringt", erläutert Martina Havenith-Newen. "Die Bewegung des unbeeinflussten Wassers ähnelt dem Tanz von Diskotänzern, es bestehen lockere Bindungen zum nächsten Partner, die nach einer Zeit aufbrechen. Wasser in Proteinnähe tanzt eher ein Menuett. Die Bewegung ist koordinierter und die Bindung zum nächsten Partner hält länger." Die Folge ist, dass Wasser in der Nähe von Proteinen weniger THz-Strahlung durchlässt. Dieses Phänomen macht es möglich, die Auswirkungen von Proteinen auf Wasser direkt zu beobachten. Die Forscher schließen aus der Menge der absorbierten Strahlung auf den Zustand des Wassers zurück.

Weitreichender Einfluss

"Anhand unserer Messungen konnten wir erstmals zeigen, dass Proteine die schnellen Bewegungen des Wassernetzwerkes über weite Bereiche beeinflussen", erläutert die Chemikerin. Rund 1000 Wassermoleküle werden durch ein Protein in ihren Netzwerkbewegungen beeinflusst. Ein solch weitreichender Effekt, der bis zu einem Abstand von 15 bis 20 Angström (1 Å = ein Zehntel Nanometer) messbar ist, wurde zwar in Simulationen vorhergesagt, konnte aber experimentell bisher nicht beobachtet werden. Dabei zeigte sich mit Hilfe der neuen Messungen, dass der Einfluss deutlich über den Bereich hinaus reicht, in dem statische Änderungen der Struktur, wie z.B. lokale Dichteänderungen beobachtet werden können (~ 3 Å). "Langfristig bleibt zu klären, welche Rolle der Terahertz-Tanz des Wassers mit dem Protein für seine biologische Funktion spielt", stellt Prof. Havenith-Newen fest.

Titelaufnahme

Simon Ebbinghaus, Seung Joong Kim, Matthias Heyden, Xin Yu, Udo Heugen, Martin Gruebele, David M. Leitner, and Martina Havenith: An extended dynamical solvation shell around proteins. In: Proceedings of the National Academy of Science PNAS 2007; http://www.pnas.org - Early Edition der Woche 17. bis 21.12.2007

Weitere Informationen

Prof. Dr. Martina Havenith-Newen, Fakultät für Chemie und Biochemie der Ruhr-Universität Bochum, Tel. 0234/32-24249, Fax: 0234/32-14183, E-Mail: martina.havenith@ruhr-uni-bochum.de

Dr. Josef König | idw
Weitere Informationen:
http://www.pnas.org
http://www.ruhr-uni-bochum.de/

Weitere Berichte zu: Protein Strahlung THz Terahertz-Tanz Terahertzstrahlung Wassermoleküle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Optischer Sensor soll Pflanzenzüchtung beschleunigen
20.03.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Pflanzen-Wirkstoff bremst aggressiven Augenkrebs
20.03.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Selbstheilender Lack aus Maisstärke lässt kleine Kratzer durch Wärme verschwinden

Ein neuer Lack aus Maisstärke ist wegen der besonderen Anordnung seiner Moleküle in der Lage, durch Wärme kleine Kratzer von selbst zu reparieren: Die Vernetzung über ringförmige Moleküle macht das Material beweglich, sodass es die Kratzer ausgleicht und diese wieder verschwinden.

Oberflächliche Mikrokratzer in der Autokarosserie oder auf anderen Hochglanzoberflächen sind harmlos, aber ärgerlich. Gerade im Luxussegment zeichnen sich...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Kartographie eines fernen Sterns

Der am Leibniz-Institut für Astrophysik Potsdam (AIP) gefertigte Spektrograph PEPSI zeigt erste Aufnahmen der Struktur des Magnetfelds auf der Oberfläche eines weit entfernten Sterns. Mittels innovativer Verfahren lassen sich damit neue Erkenntnisse über die Vorgänge auf der Sternoberfläche gewinnen. Die Ergebnisse stellte ein Wissenschaftlerteam nun in der Fachzeitschrift Astronomy & Astrophysics vor.

Selbst mit den größten Teleskopen erscheinen die Oberflächen entfernter Sterne normalerweise nur als Lichtpunkte. Eine detaillierte Auflösung wird erst mittels...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Teilchenphysik trifft Didaktik und künstliche Intelligenz in Aachen

20.03.2019 | Veranstaltungen

Künstliche Intelligenz: Ausprobieren und diskutieren

19.03.2019 | Veranstaltungen

Wissenschaftliche Tagung zur Gesundheit von Meeressäugern

18.03.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Teilchenphysik trifft Didaktik und künstliche Intelligenz in Aachen

20.03.2019 | Veranstaltungsnachrichten

Mit dem Forschungsflugzeug ins ewige Eis - Meteorologen starten Messkampagne

20.03.2019 | Geowissenschaften

Optischer Sensor soll Pflanzenzüchtung beschleunigen

20.03.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics