Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kristall zu Metall - Umwandlung auf der Nanoskala

14.12.2007
Eine internationale Kollaboration findet Beweis für Mottschen Phasenübergang

Durch neuartige "Nahfeld" - Mikroskopie konnte im MPI für Biochemie (Martinsried bei München) erstmals das spontane Entstehen winziger metallischer Bereiche beobachtet werden, die die Umwandlung eines nicht leitfähigen Kristalls in ein Metall auslösen.

Dieses Forschungsergebnis kann unser Verständnis der Supraleiter (Metalle, die den Strom ohne jeden Verlust leiten) erleichtern, oder auch die Suche nach besseren Leitern für Hochgeschwindigkeitsrechner (Science, 14.12.2007)

In der am heutigen Freitag, 14.12.2007, in Science erscheinenden Veröffentlichung stellen Markus Brehm und Fritz Keilmann mit ihren internationalen Kollegen einen neuen experimentellen Ansatz zur lange offenen Problematik des Mottschen Isolator-Metall Phasenübergangs in Vanadiumdioxid vor. Die Mitautoren sind Mumtaz Qazilbash, Greg Andreev, Brian Maple und Dimitri Basov in der University of California, San Diego, Alexander Balatsky im Los Alamos National Laboratory, sowie Byung-Gyu Chae, Hyun-Tak Kim und Sun-Jin Yun im Electronics and Telecommunications Research Laboratory, Daejeon, Korea.

... mehr zu:
»Atom »Elektron »Kristall »Metall

Materialien wie das metallische Kupfer enthalten viele bewegliche Elektronen, die den elektrischen Strom tragen. Wie auch in Aluminium, Gold oder Silber behindern sich die Elektronen nicht, sondern bewegen sich frei durch das Kristallgitter der Atome. In komplexeren Oxid-Materialien wie Vanadiumdioxid spüren die Elektronen aber positive und negative Ladungen der Atome und können in ihrer Bewegung behindert werden. Physiker nennen sie "korrelierte Materialien". Beispielsweise sind Supraleiter korrelierte Materialien, oder auch Halbleiter, also Kristalle mit nur wenigen Fremdatomen, die jeweils ein einzelnes bewegliches Elektron beisteuern. Solche korrelierten Materialien können ausserordentliche Veränderungen ihrer physikalischen Eigenschaften aufweisen und sich beispielsweise von einem Nichtleiter in ein Metall verwandeln, wenn man sie leicht unter Druck setzt oder erwärmt.

Vandiumdioxid beginnt bei 68°C leitfähig zu werden und ist bereits bei 71°C in ein Metall umgewandelt, bei Abkühlung verschwindet die Leitfähigkeit wieder. Seit grundlegenden Theorieüberlegungen von Sir Neville Mott rätseln Festkörperphysiker, wie man dem Isolator-Metall-Phasenübergang experimentell beikommen könnte. Auf die Erfolgsspur brachte den US-Spektroskopiker D.N. Basov und seinen Theoriepartner A. Balatsky ihr Interesse an elektronischer Phasenseparation, dem spontanen Auftreten von feinsten Inhomogenitäten, die möglicherweise in vielen korrelierten Materialien vorkommen. Diese sichtbar zu machen bedurfte es eines "Vergrösserungsglases für die Nanowelt", also für Gebilde mit Abmessungen zwischen denen der Atome und ausgewachsenen Mikrokristallen.

Das Infrarot-Nanoskop der Arbeitsgruppe Keilmann war das rechte Instrument zur rechten Zeit. Diese einzigartige Entwicklung hatte schon früher herausragende Veröffentlichungen ermöglicht und kürzlich einzelne Viren von weniger als 20 nm Dicke (ein Menschenhaar ist 80 000 nm dick) oder moderne Transistoren von 65 nm Länge im Infrarotkontrast abgebildet. Jetzt kam D.N. Basov mit Vanadiumdioxid-Kristallen aus Korea zu einer erfolgreichen Messkampagne nach Martinsried. Postdoktorand M. Brehm sah den zunächst strukturlosen Kristall bei Erreichen der kritischen Temperatur plötzlich von Myriaden winziger metallischer Bereiche durchsetzt, die zunehmend grösser wurden und zusammenwuchsen. Die in feinen Temperturintervallen aufgenommenen Infrarotbilder enthüllten in der mathematischen Ausarbeitung die unerwartete Existenz eines Materialzustandes besonders hoher Elektronenkorrelation, der gerade und nur in der nanoskalig-inhomogenen Phase der Materialumwandlung vorkommt.

Das Infrarot-Nanoskop mit seiner langen Wellenlänge von 10 000 nm kann so winzige Gebilde nur deshalb erkennen, weil das Licht von der Tastspitze quasi nachfokussiert wird (diese Wirkung ähnelt dem Einfangen von Rundfunk durch eine Autoantenne). Die metallischen Bereiche spiegeln das auf 20 nm konzentrierte Infrotlicht besonders gut und treten so im Infrarotbild deutlich hervor.

Die gewonnene Erkenntnisse dürften weltweit zum besseren physikalischen Verständnis dafür beitragen, wie sich geladene Teilchen durch korrelierte Materialen bewegen. Sie könnten die Materialexperten dazu bringen, die Dotierung mit Atomen zwecks Steuerung der Leitfähigkeit oder der Supraleitungsschwelle zu optimieren. Andersherum liessen sich vielleicht auch vollständig strom- oder magnetfeldabweisende Materialien massschneidern. "Wir sind natürlich begeistert dass hier vier Arbeitsgruppen verschiedener Ausrichtung (Theorie, Spektroskopie, Optik und Materialforschung) gemeinsam die erste Anwendung unseres Infrarot-Nanoskops zur Lösung eine Fundamentalproblems der Festkörperphysik zeigen"--(F. Keilmann).

Original-Veröffentlichung:
M.M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G.O. Andreev, B.-J. Kim, S.J. Yun, A.V. Balatsky, M.-P. Maple, F. Keilmann, H.-T- Kim, and D.N. Basov
"Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nanao-imaging"
Science, 14. Dec. 2007
Contacts:
Dr. Fritz Keilmann
Max-Planck-Institut für Biochemie
Abteilung Molekulare Strukturbiologie
Am Klopferspitz 18
82152 Martinsried, Germany
Tel. +49 89 8578 2617
keilmann@biochem.mpg.de
http://www.biochem.mpg.de/keilmann/
Prof. Dimitri N. Basov
Department of Physics
University of California, San Diego
La Jolla, California CA92093 USA
Office 858 822 12 11
Cell: 858 699 6297
dbasov@physics.ucsd.edu
http://infrared.ucsd.edu/

Eva-Maria Diehl | idw
Weitere Informationen:
http://www.biochem.mpg.de/keilmann/
http://infrared.ucsd.edu/

Weitere Berichte zu: Atom Elektron Kristall Metall

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wenn Bienen frieren
20.05.2019 | Max-Planck-Institut für Polymerforschung

nachricht Integrierte Zuckermoleküle schonen Zellkulturen
17.05.2019 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wasserstoff – Energieträger der Zukunft?

Fraunhofer-Allianz Energie auf Berliner Energietagen

Im Pariser Klimaabkommen beschloss die Weltgemeinschaft, dass die weltweite Wirtschaft zwischen 2050 und 2100 treibhausgasneutral werden soll. Um die...

Im Focus: Quanten-Cloud-Computing mit Selbstcheck

Mit einem Quanten-Coprozessor in der Cloud stoßen Innsbrucker Physiker die Tür zur Simulation von bisher kaum lösbaren Fragestellungen in der Chemie, Materialforschung oder Hochenergiephysik weit auf. Die Forschungsgruppen um Rainer Blatt und Peter Zoller berichten in der Fachzeitschrift Nature, wie sie Phänomene der Teilchenphysik auf 20 Quantenbits simuliert haben und wie der Quantensimulator das Ergebnis erstmals selbständig überprüft hat.

Aktuell beschäftigen sich viele Wissenschaftler mit der Frage, wie die „Quantenüberlegenheit“ auf heute schon verfügbarer Hardware genutzt werden kann.

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

MS Wissenschaft startet Deutschlandtour mit Fraunhofer-KI an Bord

17.05.2019 | Veranstaltungen

Wie sicher ist autonomes Fahren?

16.05.2019 | Veranstaltungen

Chemie – das gemeinsame Element

16.05.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Studentische Modelle: 5G-Sendemasten aus Holz für ein ästhetisches und nachhaltiges Stadtbild

20.05.2019 | Architektur Bauwesen

Klimakiller Zement: Wie sich mit Industrieabfällen CO2-neutrale Alternativen herstellen lassen

20.05.2019 | Materialwissenschaften

Wasserstoff – Energieträger der Zukunft?

20.05.2019 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics