Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Benzin und Chemikalien aus Pflanzenresten

29.06.2017

Aus dem unerschöpflichen Rohstoff Lignin, der als Bestandteil vieler Pflanzen in grossen Mengen anfällt, lassen sich theoretisch Treibstoffe und andere wichtige Substanzen für die Industrie gewinnen – bislang aber nicht effizient genug. Forschende des Paul Scherrer Instituts PSI und der ETH Zürich haben nun eine Methode gefunden, die bis dato unsichtbaren Zwischenprodukte der bei dieser Umwandlung genutzten katalytischen Reaktionen zu identifizieren. Dadurch lassen sich Herstellungsverfahren in Zukunft gezielter verbessern. Die Studie erscheint in der neusten Ausgabe des Fachjournals Nature Communications.

Wie praktisch und umweltfreundlich es doch wäre, wenn man Treibstoff ganz einfach aus Pflanzenresten herstellen könnte. Oder Phenole, die man in der Kunststoffindustrie dringend braucht. Wenn sich also fundamentale Rohstoffe unserer Zivilisation einfach aus dem gewinnen liessen, was die Natur jedes Jahr in rauen Mengen produziert und wir sonst vor lauter Überfluss verrotten lassen.


PSI-Forscher Patrick Hemberger an der VUV-Strahllinie der Synchrotron Lichtquelle Schweiz SLS. Hier hat er mit Kollegen die Details der Zerlegung von Lignin in andere Substanzen untersucht.

Foto: Scanderbeg Sauer Photography

Lignin zum Beispiel steckt in allen verholzten Pflanzen und ist mit rund 20 Milliarden Tonnen Jahresaufkommen neben Zellulose und Chitin die häufigste organische Substanz auf Erden. Es besteht zum grössten Teil aus Kohlenstoff, Wasserstoff und Sauerstoff in einem sehr komplexen und grossen Molekül, das aus kleineren Verbindungen aufgebaut ist, wie man sie zur Herstellung von Treibstoff und Phenolen braucht.

Ein grosser Schritt, den Mechanismus zu verstehen

Theoretisch lassen sich also aus Lignin diese Verbindungen durch „aufknacken“ gewinnen. Allerdings ist das chemisch extrem kompliziert und aufwendig. Unterm Strich lohnt es bislang nicht. Doch dies könnte sich dank ausgeklügelter Verfahren ändern. Und Forscher des Paul Scherrer Instituts PSI in Villigen und der ETH Zürich sind nun einen grossen Schritt vorangekommen, den Mechanismus hinter den Reaktionen besser zu verstehen, die zu den gewünschten Chemikalien führen können.

In dem Verfahren wird das grosse Molekül Lignin – die Forscher verwendeten als Modell den Lignin-Baustein Guaiacol (also einen Teil des grossen Moleküls) – bei rund 400 Grad und ohne Sauerstoff in kleinere Moleküle aufgespalten. Dabei kommt ein Katalysator zum Einsatz – ein Stoff, der die Reaktion beschleunigt ohne verbraucht zu werden. In diesem Fall nutzten die Forscher einen Zeolith, ein Material mit vielen Poren und einer daher grossen Oberfläche, an der die Reaktion stattfinden kann.

Zunächst entstehen für Sekundenbruchteile sogenannte Intermediate – gasförmige Zwischenprodukte, die mit dem Wasser und Sauerstoff der Umgebung sofort weiter zu Phenolen und anderen stabilen Endprodukten reagieren. „Diese Intermediate kann man mit herkömmlichen Methoden nicht beobachten,“ sagt Patrick Hemberger, Strahllinienwissenschaftler an der Synchrotron Lichtquelle Schweiz SLS des PSI. „Vor allem kann man sie kaum unterscheiden, weil ihre Moleküle oft aus den gleichen Atomen bestehen, die nur verschieden angeordnet sind. Könnten wir aber diese Zwischenprodukte und ihr Mengenverhältnis bestimmen, dann liesse sich auch das Verfahren so verändern, dass bestimmte Intermediate bevorzugt erzeugt werden und am Ende die Ausbeute des gewünschten Produkts steigt.“


Synchrotronlicht macht Unsichtbares sichtbar

Da die Moleküle gleich viel wiegen, sind sie etwa für ein Massenspektrometer, das Substanzen anhand ihres Gewichts sortiert, nicht auseinanderzuhalten. „Mittels sogenannter Vakuum-Ultraviolett-Synchrotronstrahlung und einer Kombination aus Massenspektrometrie und Photoelektronenspektroskopie, die wir hier an der SLS zur Verfügung haben, ist uns dies nun gelungen“, berichtet Hemberger. Bedeutet: Die speziellen Lichtstrahlen, die die SLS erzeugt, schlagen Elektronen aus den Molekülen heraus, die dann mit speziellen Verfahren beobachtet werden. „Die beobachteten Eigenschaften dieser Elektronen gleichen einem Fingerabdruck, sie sind für jede Substanz einzigartig.“

Bisher wurde bei solchen katalytischen Verfahren per „cook and look“ gearbeitet, wie der Chemiker sagt: Man probierte einfach aus, welche Versuchsanordnung am meisten von dem gewünschten Produkt ergab, variierte zum Beispiel Temperatur, den Katalysator, die Konzentration der Moleküle. „Mit dem von Patrick Hemberger entwickelten Ansatz können wir nun die komplexen Reaktionsmechanismen erstmals wirklich enträtseln“, sagt Co-Autor Jeroen van Bokhoven, Leiter des Labors für Katalyse und nachhaltige Chemie am PSI und Professor für heterogene Katalyse an der ETH Zürich. „Und dadurch können wir nun gezielter neue, bessere und umweltfreundlichere Herstellungsverfahren entwickeln“, ergänzt die zweite Co-Autorin Victoria Custodis. Noch dazu lasse sich der Ansatz auf zahlreiche andere Katalyseverfahren übertragen.

Text: Jan Berndorff


Das Paul Scherrer Institut PSI entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Energie und Umwelt sowie Mensch und Gesundheit. Die Ausbildung von jungen Menschen ist ein zentrales Anliegen des PSI. Deshalb sind etwa ein Viertel unserer Mitarbeitenden Postdoktorierende, Doktorierende oder Lernende. Insgesamt beschäftigt das PSI 2100 Mitarbeitende, das damit das grösste Forschungsinstitut der Schweiz ist. Das Jahresbudget beträgt rund CHF 380 Mio. Das PSI ist Teil des ETH-Bereichs, dem auch die ETH Zürich und die ETH Lausanne angehören sowie die Forschungsinstitute Eawag, Empa und WSL.


Kontakt/Ansprechpartner:
Dr. Patrick Hemberger
Labor für Femtochemie
Forschungsbereich Synchrotronstrahlung und Nanotechnologie
Paul Scherrer Institut, 5232 Villigen PSI, Schweiz
Telefon: +41 56 310 3265; E-Mail: patrick.hemberger@psi.ch

Originalveröffentlichung:
Understanding the mechanism of catalytic fast pyrolysis by unveiling reactive intermediates in heterogeneous catalysis
Patrick Hemberger, Victoria B.F. Custodis, Andras Bodi, Thomas Gerber, Jeroen A. van Bokhoven
Nature Communications 29 June 2017
DOI: https://dx.doi.org/10.1038/NCOMMS15946

Weitere Informationen:

http://psi.ch/Dkq7 – Darstellung der Mitteilung auf der Webseite des PSI

Jan Berndorff | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: ETH Elektronen Molekül Moleküle PSI Paul Scherrer Treibstoff

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Klimafolgenforschung in Hannover: Kleine Pflanzen gegen große Wellen
17.08.2018 | Leibniz Universität Hannover

nachricht Forschende entschlüsseln das Alter feiner Baumwurzeln
17.08.2018 | Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft WSL

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bionik im Leichtbau

17.08.2018 | Verfahrenstechnologie

Klimafolgenforschung in Hannover: Kleine Pflanzen gegen große Wellen

17.08.2018 | Biowissenschaften Chemie

HAWK-Ingenieurinnen und -Ingenieure entwickeln die leichteste 9to-LKW-Achse ihrer Art

17.08.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics