Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bei Bakterien bestimmen die Nachbarn mit, welche Zelle zuerst stirbt: Physiologie des Überlebens

17.07.2019

Bakterien gehen in Hungerphasen nicht einfach nach dem Zufallsprinzip zugrunde, sondern auch die Nachbarzellen haben ein Wörtchen mitzureden. Ein Forschungsteam der Technischen Universität München (TUM) hat nun herausgefunden, dass vor allem zwei Faktoren über Leben und Tod entscheiden: die für das Weiterleben notwendige Energie und die Effizienz, mit der die Überlebenden Biomasse aus abgestorbenen Zellen recyceln können.

Überleben und Wachstum von Zellen sind zentrale Faktoren in biologischen Systemen. Wissenschaftlerinnen und Wissenschaftler wie Ulrich Gerland, Professor für die Physik komplexer Biosysteme an der TU München, versuchen daher zu verstehen, wie die molekularen Bestandteile zusammenspielen, um in Stresssituationen die Lebensfähigkeit eines Zellverbandes zu erhalten.


Mitautorin Elena Biselli am Mikroskop.

Bild: A. Heddergott / TUM


Prof. Ulrich Gerland und Mitautorin Elena Biselli im Labor.

Bild: A. Heddergott / TUM

Dem Team um Ulrich Gerland ist es nun gelungen, zwei für das Überleben eines Bakteriums entscheidende Faktoren zu identifizieren: den Grundenergieverbrauch einer Zelle und die Menge an Energie, die die überlebenden Zellen pro toter Zelle aus der Nachbarschaft gewinnen können, also eine Art Effizienz im Recycling von Biomasse.

Nährstoffe aus benachbarten Zellkadavern

Die Forscher simulierten in Zellen des Bakteriums Escherichia Coli künstlich eine Notsituation: Es fehlte den Bakterien an Zucker und anderen Kohlehydraten. Den Bakterien standen damit weder Energie noch Baustoffe zur Verfügung.

Als erste Zellen abstarben, versuchten die überlebenden Zellen daraufhin, Nährstoffe aus benachbarten Zellkadavern zu gewinnen. Je höher der Verbrauch eines bestimmten Enzyms war, umso höher war auch die Sterblichkeitsrate, je mehr sie aus toten Zellen recyceln konnten, umso höher die Überlebensrate.

„Unsere Ergebnisse ermöglichen zum ersten Mal eine quantitative Bestimmung der Beiträge, die einzelne molekulare Bestandteile von bakteriellen Zellen zu ihrem Überleben leisten“, sagt Gerland.

Zerfall als kollektives Phänomen

Insgesamt ergab sich eine exponentielle Abnahme der Überlebensrate mit der Zeit. Prinzipiell ließe sich ein solcher Verlauf mit dem zufälligen Sterben einzelner Zellen erklären, so ähnlich wie beim radioaktiven Zerfall, der ebenfalls exponentiell verläuft.

Doch die Zusammenhänge sind komplexer, wie die Forscher durch Ändern bestimmter Randbedingungen herausfanden: Der Zerfall in Bakterienkolonien ist ein kollektives Phänomen. Die benachbarten Bakterienzellen bestimmen also mit, ob eine Zelle in ihrer Mitte abstirbt oder weiterlebt.

Mathematische Analyse des Überlebens

Veränderungen der Sterblichkeitsrate können dabei aus einer Fülle genetischer oder ökologischer Störungen entstehen, die das Überleben von Bakterien beeinflussen. Das entstehende Gleichgewicht ist daher abhängig von den Umgebungsbedingungen und bei jedem Bakterium anders.

Um die Dynamiken zu verstehen, modellierten die Forschenden das Gesamtsystem der überlebenden Bakterien mathematisch. Dann nutzten sie diese Beziehung, um molekulare Beiträge zum Überleben von Zellen zu bestimmen.

Je nach Zelltyp können so die für das Überleben von Zellen wichtigen molekularen Faktoren ermittelt werden, und es lässt sich damit herausfinden, welche Enzyme oder Proteine jeweils die Überlebensrate bestimmen.

„Unser Ziel ist es, systematisch und quantitativ zu verstehen, wie Bakterien es schaffen, unter so vielen Umgebungsbedingungen zu überleben“, sagt Gerland. „Es ist die Suche nach der Physiologie des Überlebens.“

Weitere Informationen:

Die Arbeiten wurden unter unterstützt durch die Deutsche Forschungsgemeinschaft (DFG) im Rahmen des Exzellenzclusters Nanosystems Initiative Munich (NIM) und des Schwerpunktprogramms SPP1617 sowie durch das Fellowship-Programm der Graduiertenschule für quantitative Biowissenschaften München (QBM).

Wissenschaftliche Ansprechpartner:

Prof. Dr. Ulrich Gerland
Physik komplexer Biosysteme
Technische Universität München
James-Franck-Str. 1, 85748 Garching
Tel.: +49 89 289 12380 – E-Mail: gerland@tum.de

Web: http://www.qbio.ph.tum.de/de/home/

Originalpublikation:

Death rate of E. coli during starvation is set by maintenance cost and biomass recycling
Severin J. Schink, Elena Biselli, Constantin Ammar, Ulrich Gerland
Cell Systems, July 17, 2019 – DOI: 10.1016/j.cels.2019.06.003
https://www.cell.com/cell-systems/fulltext/S2405-4712(19)30198-X

Weitere Informationen:

https://www.tum.de/nc/die-tum/aktuelles/pressemitteilungen/details/35580/ Link zur Pressemitteilung (sichtbar nach Ablauf der Sperrfrist)

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht HD-Mikroskopie in Millisekunden
20.09.2019 | Universität Bielefeld

nachricht Alpenflora im Klimawandel: Pflanzen reagieren mit "Verspätung"
20.09.2019 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Nervenzellen feuern Hirntumorzellen zum Wachstum an

Heidelberger Wissenschaftler und Ärzte beschreiben aktuell im Fachjournal „Nature“, wie Nervenzellen des Gehirns mit aggressiven Glioblastomen in Verbindung treten und so das Tumorwachstum fördern / Mechanismus der Tumor-Aktivierung liefert Ansatzpunkte für klinische Studien

Nervenzellen geben ihre Signale über Synapsen – feine Zellausläufer mit Kontaktknöpfchen, die der nächsten Nervenzelle aufliegen – untereinander weiter....

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour für die zeitaufgelöste Kristallographie

Ein Forschungsteam vom Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD), der Universität Hamburg und dem European Molecular Biology Laboratory (EMBL) hat eine neue Methode entwickelt, um Biomoleküle bei der Arbeit zu beobachten. Sie macht es bedeutend einfacher, enzymatische Reaktionen auszulösen, da hierzu ein Cocktail aus kleinen Flüssigkeitsmengen und Proteinkristallen angewandt wird. Ab dem Zeitpunkt des Mischens werden die Proteinstrukturen in definierten Abständen bestimmt. Mit der dadurch entstehenden Zeitraffersequenz können nun die Bewegungen der biologischen Moleküle abgebildet werden.

Die Funktionen von Biomolekülen werden nicht nur durch ihre molekularen Strukturen, sondern auch durch deren Veränderungen bestimmt. Mittels der...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

92. Neurologie-Kongress: Mehr als 6500 Neurologen in Stuttgart erwartet

20.09.2019 | Veranstaltungen

Frische Ideen zur Mobilität von morgen

20.09.2019 | Veranstaltungen

Thermodynamik – Energien der Zukunft

19.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ferroelektrizität verbessert Perowskit-Solarzellen

20.09.2019 | Energie und Elektrotechnik

HD-Mikroskopie in Millisekunden

20.09.2019 | Biowissenschaften Chemie

Kinobilder aus lebenden Zellen: Forscherteam aus Jena und Bielefeld 
verbessert superauflösende Mikroskopie

20.09.2019 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics