Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

"Bausteine des Lebens" können auch unnatürlich sein

30.06.2016

ChemikerInnen entdecken einfache Reaktion zur Herstellung von Aminosäuren

Aminosäuren gelten als Bausteine des Lebens und haben aufgrund ihrer individuellen Struktur sehr spezielle Charakteristika. ChemikerInnen der Universität Wien um Nuno Maulide gelang es, so genannte unnatürliche Aminosäuren herzustellen, die wichtige Komponenten für die Arzneimittelforschung sein können. Um diese komplexe chemische Reaktion zu verstehen, führte ein Team von theoretischen ChemikerInnen um Leticia González aufwändige Computersimulationen durch. Die Ergebnisse erscheinen aktuell im renommierten Fachmagazin "Journal of the American Chemical Society".


Ein Keteniminium-Ion, eine hochenergetische Spezies in der Organischen Chemie, kann durch Abspaltung von Stickstoff direkt zu Aminosäurederivaten umgewandelt werden.

Copyright: Universität Wien

Aminosäuren sind organische Verbindungen, bestehend aus einer Amino- und einer Säurefunktion, die – wenn sie sich mit weiteren Aminosäuren koppeln – lange Sequenzen bilden: so genannte Proteine. Abgesehen von Proteinen spielen Aminosäuren zum Beispiel auch bei der Biosynthese, im Metabolismus oder als Neurotransmitter eine große Rolle.

"Es sind rund 500 Aminosäuren bekannt, die sich nur in den so genannten Seitenketten unterscheiden. Diese befinden sich exakt zwischen der Amin- und der Säurefunktion des Moleküls", sagt Nuno Maulide, Professor für organische Synthese an der Universität Wien.

Die exakte Struktur dieser Seitenketten gibt jeder Aminosäure einen sehr speziellen Charakter. Deshalb suchen ChemikerInnen neue Wege, um so genannte "unnatürliche" Aminosäuren zu schaffen. Diese "künstlichen" Aminosäuren sind nichts anderes als Verbindungen ähnlicher Struktur, die jedoch sehr interessante oder nützliche Eigenschaften haben können.

"Unnatürliche Aminosäuren sind außerordentlich wichtige Komponenten in der modernen Arzneistoffforschung. Ihre strukturelle als auch funktionelle Vielfältigkeit hilft uns dabei, biologische Systeme besser zu verstehen", erklärt Nuno Maulide.

Moleküle wie Bausteine verwenden

Die Arbeitsgruppe von Maulide hat einen einfachen Weg zur direkten Herstellung von Aminosäurederivaten entwickelt, welche direkt in Polypeptid oder Proteinstrukturen eingebunden werden könnten. "Seit 2009 untersuchen wir die Reaktivität von hochenergetischen Spezies mit dem Namen Keteniminium-Ionen, die einfach aus Amiden generiert werden können", so Nuno Maulide.

"Nun haben wir herausgefunden, dass man sie in einem simplen und flexiblen Schritt direkt zu Aminosäurederivaten umwandeln kann", betont der portugiesische Forscher. "Im Prinzip machen wir es wie mit einem Baukasten: Wir nehmen ein Amid, trennen eine C-H-(Kohlenstoff-Wasserstoff-) Bindung und setzen stattdessen eine Aminogruppe dran – und das mit praktisch unendlich vielen Kombinationsmöglichkeiten“, scherzt Maulide.

Eine Kooperation mit Verlust von Stickstoff

Das Reagenz, das das Einschleusen der Aminogruppe ermöglicht, ist ein organisches Azid. Azide sind reaktive Substanzen, die eine Aminogruppe übertragen können – die treibende Kraft der Reaktion ist die Abspaltung von Stickstoff, der dabei verlorengeht. "Dank computergestützter Chemie konnten wir dieses Phänomen besser verstehen", erklären Veronica Tona und Aurélien de la Torre vom Institut für Organische Chemie der Universität Wien.

"Die theoretische Chemie kann dabei helfen, den Verlauf von komplexen chemischen Reaktionen zu verstehen oder sogar zu steuern", ergänzt Leticia González, Professorin für theoretische Chemie an der Universität Wien. "Das ist eine win-win Situation für beide Seiten und das Ganze ist, wie bereits von Aristoteles gesagt, mehr als die Summe seiner Teile“, zitiert Nuno Maulide.

Publikation in "Journal of the American Chemical Society"
"Chemo- and Stereoselective Transition Metal-Free Amination of Amides with Azides": Veronica Tona, Aurélien de la Torre, Mohan Padmanaban, Stefan Ruider, Leticia González and Nuno Maulide, in: Journal of the American Chemical Society, 2016.
DOI: 10.1021/jacs.6b04061

Verwandte Publikation in "Chemical Science"
"Divergent Ynamide Reactivity in the Presence of Azides – An Experimental and Computational Study": Veronica Tona, Stefan Ruider, Martin Berger, Saad Shaaban, Mohan Padmanaban, Lan-Gui Xie, Leticia González and Nuno Maulide
In: Chemical Science, 2016
DOI: 10.1039/c6sc01945e

Wissenschaftlicher Kontakt
Univ.-Prof. Dr. Nuno Maulide
Institut für Organische Chemie
Universität Wien
1090 Wien, Währinger Straße 38
T +43-1-4277-521 55
M +43-664-602 77-521 55
nuno.maulide@univie.ac.at

Rückfragehinweis
Mag. Alexandra Frey
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 33
M +43-664-602 77-175 33
alexandra.frey@univie.ac.at

Offen für Neues. Seit 1365.
Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 19 Fakultäten und Zentren arbeiten rund 9.600 MitarbeiterInnen, davon 6.800 WissenschafterInnen. Die Universität Wien ist damit die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 93.000 nationale und internationale Studierende inskribiert. Mit über 180 Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. www.univie.ac.at

Alexandra Frey | Universität Wien

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics