Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Bakterien ihre Wirtszellen mit klebrigen Lollis angreifen

12.11.2012
Gemeinsame Pressemitteilung des Max-Planck-Instituts für Entwicklungsbiologie und des Leibniz-Instituts für Molekulare Pharmakologie: Tübinger und Berliner Forscher untersuchen Krankheitserreger mithilfe der Festkörper-Kernspinresonanzspektroskopie – Veröffentlichungen in Nature Methods und Nature Scientific Reports

Yersinia enterocolitica ist ein krankheitserregendes Bakterium, das Fieber und Durchfall auslöst. Mit Hilfe eines in seiner Membran verankerten Proteins heftet es sich an Wirtszellen an und infiziert sie.


Bakterienoberfläche mit Adhäsinen, klebrigen Lollistrukturen, mit denen sich Bakterien an ihre Wirtszellen anheften. Copyright: Barth van Rossum/Leibniz-Institut für Molekulare Pharmakologie

Forscher des Max-Planck-Instituts für Entwicklungsbiologie in Tübingen und des Leibniz-Instituts für Molekulare Pharmakologie in Berlin haben die Struktur eines wichtigen Bestandteils dieses Membranproteins aufgeklärt und Informationen über seine Biogenese gewonnen. Die Membranproteine könnten ein interessanter Ansatzpunkt für die Entwicklung neuer Antibiotika gegen Krankheitserreger sein.

Eine Reihe von Erkrankungen geht auf eine Infektion mit Yersinia enterocolitica zurück: bei Säuglingen und Kleinkindern verursachen die Bakterien Fieber und Durchfälle, bei Jugendlichen und Erwachsenen Entzündungen des Dünndarms und verschiedene entzündliche Gelenkerkrankungen. Die Yersinien werden direkt von Tieren, vor allem Schweinen, übertragen, zum Beispiel über nicht ausreichend erhitztes Fleisch. Bestimmte Membranproteine der Bakterien, sogenannte Adhäsine, sehen nicht nur wie Lollis aus, sondern kleben auch wie diese. Bakterien können damit an Wirtszellen andocken und in sie eindringen. An die Oberfläche der Bakterien gelangen Adhäsine über einen komplexen Mechanismus, der als Autotransport bezeichnet wird. Die Forscher haben sich bei ihren Untersuchungen auf die Domäne des komplexen Proteins konzentriert, die den Transport des Außenteils bewerkstelligt. „Diese Studie war nur in einer echten Kooperation möglich“, sagt Dirk Linke vom Max-Planck-Institut. Gefördert wurde sie vom „Forschungsprogramm Methoden für die Lebenswissenschaften der Baden-Württemberg Stiftung“.

Proteine, die in der Membran sitzen, lassen sich häufig nur schlecht isolieren, in reiner Form gewinnen und kristallisieren. Das macht sie für viele Untersuchungsmethoden nur schwer zugänglich. Die Forscher wählten daher die Kernspinresonanzspektroskopie an Festkörpern, um Strukturinformationen über die fragliche Proteindomäne zu gewinnen. „Außerdem ermöglicht die Kernspinresonanz auch direkte Einblicke in die Dynamik des Transports“, erklärt Barth van Rossum vom Leibniz-Institut.

Yersinien gehören zu den sogenannten gram-negativen Bakterien, die von einer äußeren Doppelwand mit besonderer Struktur umgeben sind. Zu dieser Gruppe gehören viele weitere Krankheitserreger, die Durchfälle oder Infektionen der Harn- und Atemwege verursachen, wie Salmonellen, Legionellen oder der Cholera-Erreger. Die Forscher gehen davon aus, dass viele von ihnen ähnliche Membranproteine wie Yersinien bei der Infektion nutzen. „In menschlichen Zellen kommt dieser Typ Membranprotein dagegen nicht vor“, sagt Dirk Linke. Hoffnungen gingen dahin, das Wissen über die Autotransporter-Membranproteine für die Entwicklung neuer Wirkstoffe nutzen zu können, die den Transportprozess an der Membran krankheitserregender Bakterien vor der Anheftung an die Wirtszelle gezielt blockieren. Bis dahin sei es jedoch noch ein weiter Weg. Die Forscher wollen nun zunächst an der untersuchten Proteindomäne systematisch die besonders flexiblen Bereiche verändern, um den Mechanismus genauer zu begreifen.

Originalpublikationen:
Shakeel A. Shahid, Benjamin Bardiaux, Trent Franks, Ludwig Krabben, Michael Habeck, Barth-Jan van Rossum, Dirk Linke: Membrane protein structure determination by solid-state NMR spectroscopy of microcrystals. Nature Methods, 2012; doi: 10.1038/NMETH.2248

Shakeel A. Shahid, Stefan Markovic, Dirk Linke & Barth-Jan van Rossum: Assignment and secondary structure of the YadA membrane protein by solid-state MAS NMR. Scientific Reports (2012); doi: 10.1038/srep00803

Ansprechpartner:

Dirk Linke
Max-Planck-Institut für Entwicklungsbiologie
Tel.: 07071 601- 357
E-Mail: dirk.linke(at)tuebingen.mpg.de
Janna Eberhardt (Presse- & Öffentlichkeitsarbeit)
Tel.: 07071 601- 444
E-Mail: presse-eb(at)tuebingen.mpg.de
Barth-Jan van Rossum
Leibniz-Institut für Molekulare Pharmakologie
Tel.: 030 94793- 244
E-Mail: brossum(at)fmp-berlin.de
Silke Oßwald (Presse- und Öffentlichkeitsarbeit)
Tel.: 030 94793-104
E-Mail: osswald(at)fmp-berlin.de

Janna Eberhardt | Max-Planck-Institut
Weitere Informationen:
http://tuebingen.mpg.de/startseite/detail/wie-bakterien-ihre-wirtszellen-mit-klebrigen-lollis-angreifen.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Unbekannter Hemmmechanismus für Humanes Cytomegalievirus entdeckt
14.11.2018 | TWINCORE - Zentrum für Experimentelle und Klinische Infektionsforschung

nachricht Warum Einkorn besser für Menschen mit Weizenunverträglichkeit sein könnte
14.11.2018 | Leibniz-Institut für Lebensmittel-Systembiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: Optimierung von Legierungswerkstoffen: Diffusionsvorgänge in Nanoteilchen entschlüsselt

Ein Forschungsteam der TU Graz entdeckt atomar ablaufende Prozesse, die neue Ansätze zur Verbesserung von Materialeigenschaften liefern.

Aluminiumlegierungen verfügen über einzigartige Materialeigenschaften und sind unverzichtbare Werkstoffe im Flugzeugbau sowie in der Weltraumtechnik.

Im Focus: Graphen auf dem Weg zur Supraleitung

Doppelschichten aus Graphen haben eine Eigenschaft, die ihnen erlauben könnte, Strom völlig widerstandslos zu leiten. Dies zeigt nun eine Arbeit an BESSY II. Ein Team hat dafür die Bandstruktur dieser Proben mit extrem hoher Präzision ausgemessen und an einer überraschenden Stelle einen flachen Bereich entdeckt. Möglich wurde dies durch die extrem hohe Auflösung des ARPES-Instruments an BESSY II.

Aus reinem Kohlenstoff bestehen so unterschiedliche Materialien wie Diamant, Graphit oder Graphen. In Graphen bilden die Kohlenstoffatome ein zweidimensionales...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

Wer rechnet schneller? Algorithmen und ihre gesellschaftliche Überwachung

12.11.2018 | Veranstaltungen

Profilierte Ausblicke auf die Mobilität von morgen

12.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Umgebung macht das Molekül zum Schalter

14.11.2018 | Physik Astronomie

Mit Gold Krankheiten aufspüren

14.11.2018 | Medizintechnik

Nächster Schritt auf dem Weg zu einer effizienten Biobrennstoffzelle

14.11.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics