Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bakterien: Proteinforscher entschlüsseln Resistenzmechanismus

25.10.2018

Resistenzen gegen Antibiotika nehmen weltweit zu. Um zu verstehen, wie Bakterien immun gegen bisher gut funktionierende Wirkstoffe werden, dringen Wissenschaftler immer tiefer in die molekularen Strukturen in Zellen vor. Einer Forschergruppe der Martin-Luther-Universität Halle-Wittenberg (MLU) ist es jetzt gelungen, ein für die Antibiotikaresistenz relevantes Membranprotein aus E. coli-Bakterien zu isolieren und seine molekulare Struktur aufzuklären. Mit Hilfe dieser Informationen konnten sie zeigen, wie es dem Bakterium gelingt, sich eines Antibiotikums zu entledigen: durch Ausschleusen des Wirkstoffs. Die Arbeit erscheint in der renommierten Fachzeitschrift "Nature Communications".

Resistenzen von Bakterien gegen Antibiotika sind ein besorgniserregendes medizinisches Problem unserer Zeit. Nehmen sie weiter zu, besteht die Gefahr, dass bisher gut behandelbare bakterielle Infektionskrankheiten einen derart schweren Verlauf nehmen, dass Patienten daran sterben.


Das Resistenzprotein MdfA sitzt in der Zellmembran von E. coli. Im Zuge der strukturellen Umwandlung der einen Struktur in die andere (und zurück) wird das Antibiotikum aus der Zelle herausgepumpt.

Milton Stubbs

"Das ist eine reale Bedrohung", sagt Prof. Dr. Milton T. Stubbs, Direktor des Zentrums für Innovationskompetenz (ZIK) "HALOmem", an dem die Arbeit durchgeführt wurde. Stubbs forscht seit vielen Jahren zur Biosynthese von Antibiotika. Aufgrund dieser Gefahr sei es enorm wichtig, Resistenzmechanismen aufzuklären, so Stubbs.

Die aktuelle Studie geht aus der Arbeit einer Nachwuchsgruppe am ZIK HALOmem hervor, die zu diesem Zeitpunkt von Dr. Mikio Tanabe geleitet wurde. Dieser ist inzwischen Wissenschaftler an der renommierten "KEK"-Forschungseinrichtung in Tsukuba, Japan.

Der Gruppe gelang es, ein Membranprotein namens MdfA aus E. coli-Bakterien zu isolieren und seine molekulare Struktur aufzuklären. Dazu musste das Protein erst im Labor produziert, in reiner Form isoliert und kristallisiert werden. "Das ist bei den empfindlichen Membranproteinen ein sehr komplizierter Prozess. Es kommt darauf an, im Labor optimale Bedingungen zu finden, unter denen das Protein stabil und in seiner natürlichen Struktur bleibt", erklärt Stubbs.

Mittels Röntgenkristallografie konnte die Struktur des gewonnenen Materials schließlich aufgeklärt werden. Dank dieses präzisen physikalischen Verfahrens sind Forscher inzwischen in der Lage, in den Ångström-Bereich vorzudringen - ein Ångström entspricht einem Zehntel Nanometer, also einem Zehnmilliardstel (10-10) Meter.

Das bedeutet: Man gelangt mit dieser Methode in einen Größenbereich, in dem einzelne Atome sichtbar werden. Nur mit Hilfe einer derart hohen Auflösung lassen sich die molekularen Details von Proteinen erkennen, durch die man letztendlich ihre Funktionsweise verstehen kann.

So konnte das Membranprotein MdfA des E. coli-Bakteriums schließlich in seiner dreidimensionalen Struktur sichtbar gemacht werden. Dabei nutzten die halleschen Forscher auch die Ergebnisse einer Arbeit, die Konkurrenten aus China kurz zuvor zu diesem Protein publiziert hatten, wodurch es gelang den MdfA-vermittelten Resistenzmechanismus aufzuklären.

Die Wirkungsweise von MdfA lässt sich mit einer Art Pumpe vergleichen. Dabei wird das Antibiotikum zwar zunächst von den Bakterien aufgenommen, in einem zweiten Schritt jedoch befördert MdfA den Wirkstoff wieder aus der Zelle heraus, so dass er seine für das Bakterium tödliche Wirkung nicht mehr entfalten kann.

"Wir gehen davon aus, dass der in dieser Arbeit aufgedeckte Mechanismus auch für viele andere Antibiotika gilt", erklärt Milton Stubbs. Damit liefere man zugleich die Grundlage für eine spätere praktische Anwendung. "Denn nur wenn wir herausfinden, wie Resistenzen überhaupt entstehen, können wir Lösungen suchen, um sie zu verhindern."

Die nun vorliegende Publikation zu dieser Arbeit ist im renommierten Fachmagazin "Nature Communications" erschienen. Es ist zugleich eine der ersten großen Forschungsarbeiten, die unter dem Dach des neuen Charles-Tanford-Proteinzentrums der MLU publiziert worden ist. Milton Stubbs: "Ein solcher Erfolg ist für unseren Standort natürlich eine schöne Bestätigung."

Originalpublikation:

Nagarathinam, K. et al. Outward open conformation of a Major Facilitator Superfamily multidrug/H+ antiporter provides insights into switching mechanism. Nature Communications (2018), doi: 10.1038/s41467-018-06306-x

Tom Leonhardt | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-halle.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Betazellfunktion im Tiermodell wiederhergestellt: Neue Wirkstoffkombination könnte Diabetes-Remission ermöglichen
21.02.2020 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Darmkrebs: Erhöhte Lebenserwartung dank individueller Therapien
20.02.2020 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Globale Datenbank für Karstquellenabflüsse

21.02.2020 | Geowissenschaften

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungsnachrichten

Langlebige Fachwerkbrücken aus Stahl einfacher bemessen

21.02.2020 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics