Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bakterien holen sich Resistenzen bei der Konkurrenz

27.12.2017

Bakterien entwickeln nicht nur selbst Antibiotika-Resistenzen, sie holen sich solche Resistenzen auch von ihren Konkurrenten. Forscher vom Biozentrum der Universität Basel konnten nun in einer aktuellen Studie in «Cell Reports» zeigen, dass einige Bakterien ihren Konkurrenten einen Giftcocktail injizieren, der diese zerplatzen lässt. Die dabei freigesetzte Erbinformation, die auch Resistenzen enthalten kann, nimmt das Angreifer-Bakterium auf und wird so selbst resistent.

Die häufige und oftmals unachtsame Verwendung von Antibiotika führt zu einer immer schnelleren Verbreitung von Resistenzen. Zu den Hot-Spots zählen dabei insbesondere Spitäler. Hier bringen nicht nur Patienten unterschiedlichste, zum Teil bereits resistente Keime ins Haus.


Die durch das T6SS (grün, violett) vermittelte Abtötung und Auflösung konkurrierender Bakterien kann zur DNA-Freisetzung (türkis) und anschliessendem Genaustausch führen.

Universität Basel, Biozentrum

Durch den Einsatz von Antibiotika zur Bekämpfung von Infektionen sind Spitäler ein Ort, wo Antibiotika-Resistenzen häufiger entstehen und zusätzlich unter den bakteriellen Krankheitserregern weitergegeben werden.

Einer dieser typischen Krankenhauskeime ist das Bakterium Acinetobacter baumannii. Umgangssprachlich wird es auch als «Irak-Keim» bezeichnet, da im Irakkrieg multiresistente Bakterien dieser Art schwere, nur schwer behandelbare Wundinfektionen bei amerikanischen Soldaten verursachten.

Multiresistente Bakterien durch Genaustausch

Die Entstehung von Multiresistenzen geht unter anderem auf eine besondere Fähigkeit einiger Bakterien zurück: Sie bekämpfen Konkurrenten, indem sie ihnen Giftproteine, sogenannte Effektoren, mithilfe eines Typ-VI-Sekretionssystems (T6SS) injizieren. Die Angreifer sind in der Lage, die freiwerdende Erbsubstanz aufzunehmen und selbst wiederzuverwenden.

Im Modellorganismus Acinetobacter baylyi, einem nahen Verwandten des Irak-Keims, hat Prof. Marek Baslers Team vom Biozentrum der Universität Basel nun fünf solcher Effektoren identifiziert, die auf unterschiedlichste Art und Weise wirken. «Einige dieser toxischen Proteine töten den Gegner sehr effektiv, zerstören die Zelle dabei jedoch nicht», erklärt Basler. «Andere wiederum beschädigen die Zellhülle so stark, dass das angegriffene Bakterium zerplatzt und Erbsubstanz austritt.»

Die Angreifer verleiben sich die freigesetzten DNA-Fragmente ein. Befinden sich darauf nun Gene, die für eine bestimmte Resistenz verantwortlich sind, so wird der neue Besitzer ebenfalls resistent gegen dieses Antibiotikum. Das Antibiotikum ist in Folge dessen nicht mehr wirksam und der Keim kann sich weitgehend ungestört vermehren.

In Spitälern sind Krankheitserreger mit diesen Fähigkeiten ein grosses Problem. Denn durch den Kontakt mit anderen resistenten Keimen können diese immer neue Antibiotika-Resistenzen ansammeln – die Bakterien werden schliesslich multiresistent. Im schlimmsten Fall wirkt kein Antibiotikum mehr, Infektionen mit multiresistenten Krankenhauskeimen werden zur tödlichen Gefahr für die Patienten.

Giftproteine und Gegengifte

«Das Typ-VI-Sekretionssystem sowie ein Set an verschiedenen Effektoren findet sich auch bei anderen Infektionserregern wie zum Beispiel dem Erreger der Lungenentzündung oder dem Choleraerreger», sagt Basler. Interessanterweise wirken nicht alle Giftproteine gleich gut, da viele Bakterien Gegengifte – sogenannte Immunitätsproteine – entwickelt oder erworben haben.

«Wir haben für die fünf Effektoren auch die dazugehörigen Immunitätsproteine identifiziert. Für die Angreifer ist es sinnvoll, nicht nur ein einziges Giftprotein zu produzieren, sondern einen Cocktail verschiedenster Toxine mit unterschiedlicher Wirkungsweise», so Basler. «So erhöht sich die Wahrscheinlichkeit, dass der Gegner erfolgreich ausgeschaltet werden kann und in einigen Fällen, durch die Auflösung der Zelle, auch dessen DNA verfügbar wird.»

Eroberung neuer ökologischer Nischen

Antibiotika und Resistenzen gibt es schon seit Jahrmillionen. Sie haben sich im Zusammenleben der Mikroorganismen entwickelt und ermöglichten Bakterien, sich gegen Feinde zu wehren oder Konkurrenten auszuschalten. Auf diese Weise können sie neue ökologische Nischen erobern und besetzen. Mit dem Einsatz von Antibiotika in der Medizin wurde die natürliche Fähigkeit zur Resistenzentwicklung jedoch zum Problem. Sie stellt die Forscher vor die Herausforderung kontinuierlich neue Antibiotika zu entwickeln und die Ausbreitung der Resistenzen zu verlangsamen.

Originalbeitrag

Peter D. Ringel, Di Hu, Marek Basler. The role of Type VI Secretion System Effectors in Target Cell Lysis and Subsequent Horizontal Gene Transfer.
Cell Reports (2017), doi: 10.1016/j.celrep.2017.12.020

Weitere Auskünfte

Prof. Dr. Marek Basler, ​Universität Basel, Biozentrum, Tel. +41 61 207 21 10, E-Mail: marek.basler@unibas.ch

Dr. Katrin Bühler, Universität Basel, Kommunikation Biozentrum, Tel. +41 61 207 09 74, E-Mail: katrin.buehler@unibas.ch

Dr. Katrin Bühler | Universität Basel
Weitere Informationen:
http://www.unibas.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics